Your browser doesn't support javascript.
Surface enhanced Raman spectroscopy based analysis of SARS-CoV-2 spike protein binding to ACE2 receptor
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12383, 2023.
Article in English | Scopus | ID: covidwho-20244628
ABSTRACT
The SARS-CoV-2 virus is still a challenge because of its diversity and mutations. The binding interactions of the angiotensin converting enzyme 2 (ACE2) receptor and the spike protein are relevant for the SARS-CoV-2 virus to enter the cell. Consequently, it is important and helpful to analyze binding activities and the changes in the structure of the ACE2 receptor and the spike protein. Surface enhanced Raman spectroscopy is able to analyze small concentrations of the proteins without contact, non-invasively and label-free. In this work, we present a SERS based approach in the visible wavelength range to analyze and study the binding interactions of the ACE2 receptor and the spike protein. SERS measurements of the ACE2 receptor, the spike protein and the ACE2-spike complex were performed. Additionally, an inhibitor was used to prevent the spike protein from binding to ACE2 and to compare the results. The analysis of the measured SERS spectra reveals structural differences and changes due to binding activities. Thus, we show that the performed SERS based approach can help for rapid and non-invasive analysis of binding interactions of the ACE2-spike complex and also of protein binding in general. © 2023 SPIE.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Progress in Biomedical Optics and Imaging - Proceedings of SPIE Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Progress in Biomedical Optics and Imaging - Proceedings of SPIE Year: 2023 Document Type: Article