Your browser doesn't support javascript.
Investigation of demographic implicit discrimination and disparate impact in chest radiography image-based AI for COVID-19 severity prediction
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12467, 2023.
Article in English | Scopus | ID: covidwho-20244646
ABSTRACT
It is important to evaluate medical imaging artificial intelligence (AI) models for possible implicit discrimination (ability to distinguish between subgroups not related to the specific clinical task of the AI model) and disparate impact (difference in outcome rate between subgroups). We studied potential implicit discrimination and disparate impact of a published deep learning/AI model for the prediction of ICU admission for COVID-19 within 24 hours of imaging. The IRB-approved, HIPAA-compliant dataset contained 8,357 chest radiography exams from February 2020-January 2022 (12% ICU admission within 24 hours) and was separated by patient into training, validation, and test sets (64%, 16%, 20% split). The AI output was evaluated in two demographic categories sex assigned at birth (subgroups male and female) and self-reported race (subgroups Black/African-American and White). We failed to show statistical evidence that the model could implicitly discriminate between members of subgroups categorized by race based on prediction scores (area under the receiver operating characteristic curve, AUC median [95% confidence interval, CI] 0.53 [0.48, 0.57]) but there was some marginal evidence of implicit discrimination between members of subgroups categorized by sex (AUC 0.54 [0.51, 0.57]). No statistical evidence for disparate impact (DI) was observed between the race subgroups (i.e. the 95% CI of the ratio of the favorable outcome rate between two subgroups included one) for the example operating point of the maximized Youden index but some evidence of disparate impact to the male subgroup based on sex was observed. These results help develop evaluation of implicit discrimination and disparate impact of AI models in the context of decision thresholds © COPYRIGHT SPIE. Downloading of the is permitted for personal use only.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Type of study: Experimental Studies / Prognostic study Language: English Journal: Progress in Biomedical Optics and Imaging - Proceedings of SPIE Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Type of study: Experimental Studies / Prognostic study Language: English Journal: Progress in Biomedical Optics and Imaging - Proceedings of SPIE Year: 2023 Document Type: Article