Your browser doesn't support javascript.
The Quantification of Spike Proteins in the Inactivated SARS-CoV-2 Vaccines of the Prototype, Delta, and Omicron Variants by LC-MS.
Xu, Kangwei; Sun, Huang; Wang, Kaiqin; Quan, Yaru; Qiao, Zhizhong; Hu, Yaling; Li, Changgui.
  • Xu K; NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China.
  • Sun H; Sinovac Life Sciences Co., Ltd., No. 21, Tianfu St., Daxing Biomedicine Industrial Base of Zhongguancun Science Park, Daxing District, Beijing 100050, China.
  • Wang K; NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China.
  • Quan Y; NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China.
  • Qiao Z; NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China.
  • Hu Y; Sinovac Life Sciences Co., Ltd., No. 21, Tianfu St., Daxing Biomedicine Industrial Base of Zhongguancun Science Park, Daxing District, Beijing 100050, China.
  • Li C; NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China.
Vaccines (Basel) ; 11(5)2023 May 20.
Article in English | MEDLINE | ID: covidwho-20244912
ABSTRACT
Developing variant vaccines or multivalent vaccines is a feasible way to address the epidemic as the SARS-CoV-2 variants of concern (VOCs) posed an increased risk to global public health. The spike protein of the SARS-CoV-2 virus was usually used as the main antigen in many types of vaccines to produce neutralizing antibodies against the virus. However, the spike (S) proteins of different variants were only differentiated by a few amino acids, making it difficult to obtain specific antibodies that can distinguish different VOCs, thereby challenging the accurate distinction and quantification of the variants using immunological methods such as ELISA. Here, we established a method based on LC-MS to quantify the S proteins in inactivated monovalent vaccines or trivalent vaccines (prototype, Delta, and Omicron strains). By analyzing the S protein sequences of the prototype, Delta, and Omicron strains, we identified peptides that were different and specific among the three strains and synthesized them as references. The synthetic peptides were isotopically labeled as internal targets. Quantitative analysis was performed by calculating the ratio between the reference and internal target. The verification results have shown that the method we established had good specificity, accuracy, and precision. This method can not only accurately quantify the inactivated monovalent vaccine but also could be applied to each strain in inactivated trivalent SARS-CoV-2 vaccines. Hence, the LC-MS method established in this study can be applied to the quality control of monovalent and multivalent SARS-CoV-2 variation vaccines. By enabling more accurate quantification, it will help to improve the protection of the vaccine to some extent.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Prognostic study Topics: Vaccines / Variants Language: English Year: 2023 Document Type: Article Affiliation country: Vaccines11051002

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Prognostic study Topics: Vaccines / Variants Language: English Year: 2023 Document Type: Article Affiliation country: Vaccines11051002