Your browser doesn't support javascript.
Viral emissions into the air and environment after SARS-CoV-2 human challenge: a phase 1, open label, first-in-human study.
Zhou, Jie; Singanayagam, Anika; Goonawardane, Niluka; Moshe, Maya; Sweeney, Fiachra P; Sukhova, Ksenia; Killingley, Ben; Kalinova, Mariya; Mann, Alex J; Catchpole, Andrew P; Barer, Michael R; Ferguson, Neil M; Chiu, Christopher; Barclay, Wendy S.
  • Zhou J; Section of Virology, Imperial College London, London, UK.
  • Singanayagam A; Section of Adult Infectious Disease, Imperial College London, London, UK.
  • Goonawardane N; Section of Virology, Imperial College London, London, UK.
  • Moshe M; Section of Virology, Imperial College London, London, UK.
  • Sweeney FP; Section of Virology, Imperial College London, London, UK.
  • Sukhova K; Section of Virology, Imperial College London, London, UK.
  • Killingley B; Department of Infectious Diseases, University College London Hospital, London, UK.
  • Kalinova M; hVIVO Services, London, UK.
  • Mann AJ; hVIVO Services, London, UK.
  • Catchpole AP; hVIVO Services, London, UK.
  • Barer MR; Department of Respiratory Sciences, University of Leicester, Leicester, UK.
  • Ferguson NM; Department of Infectious Disease, and MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.
  • Chiu C; Section of Adult Infectious Disease, Imperial College London, London, UK.
  • Barclay WS; Section of Virology, Imperial College London, London, UK. Electronic address: w.barclay@imperial.ac.uk.
Lancet Microbe ; 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20245381
ABSTRACT

BACKGROUND:

Effectively implementing strategies to curb SARS-CoV-2 transmission requires understanding who is contagious and when. Although viral load on upper respiratory swabs has commonly been used to infer contagiousness, measuring viral emissions might be more accurate to indicate the chance of onward transmission and identify likely routes. We aimed to correlate viral emissions, viral load in the upper respiratory tract, and symptoms, longitudinally, in participants who were experimentally infected with SARS-CoV-2.

METHODS:

In this phase 1, open label, first-in-human SARS-CoV-2 experimental infection study at quarantine unit at the Royal Free London NHS Foundation Trust, London, UK, healthy adults aged 18-30 years who were unvaccinated for SARS-CoV-2, not previously known to have been infected with SARS-CoV-2, and seronegative at screening were recruited. Participants were inoculated with 10 50% tissue culture infectious dose of pre-alpha wild-type SARS-CoV-2 (Asp614Gly) by intranasal drops and remained in individual negative pressure rooms for a minimum of 14 days. Nose and throat swabs were collected daily. Emissions were collected daily from the air (using a Coriolis µ air sampler and directly into facemasks) and the surrounding environment (via surface and hand swabs). All samples were collected by researchers, and tested by using PCR, plaque assay, or lateral flow antigen test. Symptom scores were collected using self-reported symptom diaries three times daily. The study is registered with ClinicalTrials.gov, NCT04865237.

FINDINGS:

Between March 6 and July 8, 2021, 36 participants (ten female and 26 male) were recruited and 18 (53%) of 34 participants became infected, resulting in protracted high viral loads in the nose and throat following a short incubation period, with mild-to-moderate symptoms. Two participants were excluded from the per-protocol analysis owing to seroconversion between screening and inoculation, identified post hoc. Viral RNA was detected in 63 (25%) of 252 Coriolis air samples from 16 participants, 109 (43%) of 252 mask samples from 17 participants, 67 (27%) of 252 hand swabs from 16 participants, and 371 (29%) of 1260 surface swabs from 18 participants. Viable SARS-CoV-2 was collected from breath captured in 16 masks and from 13 surfaces, including four small frequently touched surfaces and nine larger surfaces where airborne virus could deposit. Viral emissions correlated more strongly with viral load in nasal swabs than throat swabs. Two individuals emitted 86% of airborne virus, and the majority of airborne virus collected was released on 3 days. Individuals who reported the highest total symptom scores were not those who emitted most virus. Very few emissions occurred before the first reported symptom (7%) and hardly any before the first positive lateral flow antigen test (2%).

INTERPRETATION:

After controlled experimental inoculation, the timing, extent, and routes of viral emissions was heterogeneous. We observed that a minority of participants were high airborne virus emitters, giving support to the notion of superspreading individuals or events. Our data implicates the nose as the most important source of emissions. Frequent self-testing coupled with isolation upon awareness of first symptoms could reduce onward transmissions.

FUNDING:

UK Vaccine Taskforce of the Department for Business, Energy and Industrial Strategy of Her Majesty's Government.

Full text: Available Collection: International databases Database: MEDLINE Type of study: Diagnostic study / Experimental Studies / Prognostic study Topics: Vaccines Language: English Year: 2023 Document Type: Article Affiliation country: S2666-5247(23)00101-5

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Diagnostic study / Experimental Studies / Prognostic study Topics: Vaccines Language: English Year: 2023 Document Type: Article Affiliation country: S2666-5247(23)00101-5