Your browser doesn't support javascript.
Modeling and simulation of infectious diseases: Microscale transmission, decontamination and macroscale propagation
Modeling and Simulation of Infectious Diseases: Microscale Transmission, Decontamination and Macroscale Propagation ; : 1-111, 2023.
Article in English | Scopus | ID: covidwho-20245443
ABSTRACT
The COVID-19 pandemic that started in 2019-2020 has led to a gigantic increase in modeling and simulation of infectious diseases. There are numerous topics associated with this epoch-changing event, such as (a) disease propagation, (b) transmission, (c) decontamination, and (d) vaccines. This is an evolving field. The targeted objective of this book is to expose researchers to key topics in this area, in a very concise manner. The topics selected for discussion have evolved with the progression of the pandemic. Beyond the introductory chapter on basic mathematics, optimization, and machine learning, the book covers four themes in modeling and simulation infectious diseases, specifically Part 1 Macroscale disease propagation, Part 2 Microscale disease transmission and ventilation system design, Part 3 Ultraviolet viral decontamination, and Part 4 Vaccine design and immune response. It is important to emphasize that the rapid speed at which the simulations operate makes the presented computational tools easily deployable as digital twins, i.e., digital replicas of complex systems that can be inexpensively and safely optimized in a virtual setting and then used in the physical world afterward, thus reducing the costs of experiments and also accelerating development of new technologies. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Topics: Vaccines Language: English Journal: Modeling and Simulation of Infectious Diseases: Microscale Transmission, Decontamination and Macroscale Propagation Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Topics: Vaccines Language: English Journal: Modeling and Simulation of Infectious Diseases: Microscale Transmission, Decontamination and Macroscale Propagation Year: 2023 Document Type: Article