Your browser doesn't support javascript.
A Deep Learning Approach for Viral DNA Sequence Classification using Genetic Algorithm
International Journal of Advanced Computer Science and Applications ; 13(8):530-538, 2022.
Article in English | Scopus | ID: covidwho-2025703
ABSTRACT
DNA sequence classification is one of the major challenges in biological data processing. The identification and classification of novel viral genome sequences drastically help in reducing the dangers of a viral outbreak like COVID-19. The more accurate the classification of these viruses, the faster a vaccine can be produced to counter them. Thus, more accurate methods should be utilized to classify the viral DNA. This research proposes a hybrid deep learning model for efficient viral DNA sequence classification. A genetic algorithm (GA) was utilized for weight optimization with Convolutional Neural Networks (CNN) architecture. Furthermore, Long Short-Term Memory (LSTM) as well as Bidirectional CNN-LSTM model architectures are employed. Encoding methods are needed to transform the DNA into numeric format for the proposed model. Three different encoding methods to represent DNA sequences as input to the proposed model were experimented k-mer, label encoding, and one hot vector encoding. Furthermore, an efficient oversampling method was applied to overcome the imbalanced dataset issues. The performance of the proposed GA optimized CNN hybrid model using label encoding achieved the highest classification accuracy of 94.88% compared with other encoding methods © 2022, International Journal of Advanced Computer Science and Applications.All Rights Reserved.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: International Journal of Advanced Computer Science and Applications Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: International Journal of Advanced Computer Science and Applications Year: 2022 Document Type: Article