Your browser doesn't support javascript.
A comparison of conventional and advanced electroanalytical methods to detect SARS-CoV-2 virus: A concise review.
Ganesh, Pattan-Siddappa; Kim, Sang-Youn.
  • Ganesh PS; Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education (KoreaTech), Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea. Electronic address: ganeshps11@koreatech.ac.kr.
  • Kim SY; Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education (KoreaTech), Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea. Electronic address: sykim@koreatech.ac.kr.
Chemosphere ; 307(Pt 1): 135645, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2035840
ABSTRACT
Respiratory viruses are a serious threat to human wellbeing that can cause pandemic disease. As a result, it is critical to identify virus in a timely, sensitive, and precise manner. The present novel coronavirus-2019 (COVID-19) disease outbreak has increased these concerns. The research of developing various methods for COVID-19 virus identification is one of the most rapidly growing research areas. This review article compares and addresses recent improvements in conventional and advanced electroanalytical approaches for detecting COVID-19 virus. The popular conventional methods such as polymerase chain reaction (PCR), loop mediated isothermal amplification (LAMP), serology test, and computed tomography (CT) scan with artificial intelligence require specialized equipment, hours of processing, and specially trained staff. Many researchers, on the other hand, focused on the invention and expansion of electrochemical and/or bio sensors to detect SARS-CoV-2, demonstrating that they could show a significant role in COVID-19 disease control. We attempted to meticulously summarize recent advancements, compare conventional and electroanalytical approaches, and ultimately discuss future prospective in the field. We hope that this review will be helpful to researchers who are interested in this interdisciplinary field and desire to develop more innovative virus detection methods.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Diagnostic study / Observational study / Prognostic study Limits: Humans Language: English Journal: Chemosphere Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Diagnostic study / Observational study / Prognostic study Limits: Humans Language: English Journal: Chemosphere Year: 2022 Document Type: Article