Your browser doesn't support javascript.
A Study on the Nature of SARS-CoV-2 Using the Shell Disorder Models: Reproducibility, Evolution, Spread, and Attenuation.
Goh, Gerard Kian-Meng; Dunker, A Keith; Foster, James A; Uversky, Vladimir N.
  • Goh GK; Goh's BioComputing, Singapore 548957, Singapore.
  • Dunker AK; Center for Computational Biology, Indiana and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
  • Foster JA; Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
  • Uversky VN; Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA.
Biomolecules ; 12(10)2022 09 23.
Article in English | MEDLINE | ID: covidwho-2043570
ABSTRACT
The basic tenets of the shell disorder model (SDM) as applied to COVID-19 are that the harder outer shell of the virus shell (lower PID-percentage of intrinsic disorder-of the membrane protein M, PIDM) and higher flexibility of the inner shell (higher PID of the nucleocapsid protein N, PIDN) are correlated with the contagiousness and virulence, respectively. M protects the virion from the anti-microbial enzymes in the saliva and mucus. N disorder is associated with the rapid replication of the virus. SDM predictions are supported by two experimental observations. The first observation demonstrated lesser and greater presence of the Omicron particles in the lungs and bronchial tissues, respectively, as there is a greater level of mucus in the bronchi. The other observation revealed that there are lower viral loads in 2017-pangolin-CoV, which is predicted to have similarly low PIDN as Omicron. The abnormally hard M, which is very rarely seen in coronaviruses, arose from the fecal-oral behaviors of pangolins via exposure to buried feces. Pangolins provide an environment for coronavirus (CoV) attenuation, which is seen in Omicron. Phylogenetic study using M shows that COVID-19-related bat-CoVs from Laos and Omicron are clustered in close proximity to pangolin-CoVs, which suggests the recurrence of interspecies transmissions. Hard M may have implications for long COVID-19, with immune systems having difficulty degrading viral proteins/particles.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Observational study / Prognostic study / Randomized controlled trials Topics: Long Covid / Variants Limits: Animals / Humans Language: English Year: 2022 Document Type: Article Affiliation country: Biom12101353

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Observational study / Prognostic study / Randomized controlled trials Topics: Long Covid / Variants Limits: Animals / Humans Language: English Year: 2022 Document Type: Article Affiliation country: Biom12101353