Your browser doesn't support javascript.
A photoelectrochemical immunosensor based on magnetic all-solid-state Z-scheme heterojunction for SARS-CoV-2 Nucleocapsid Protein detection
Sensors and actuators. B, Chemical ; 2022.
Article in English | EuropePMC | ID: covidwho-2045638
ABSTRACT
Rapid, convenient and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is urgently needed to timely diagnosis of coronavirus pandemic (COVID-19) and control of the epidemic. In this study, a signal-off photoelectrochemical (PEC) immunosensor was constructed for SARS-CoV-2 nucleocapsid (N) protein detection based on a magnetic all-solid-state Z-scheme heterojunction (Fe3O4@SiO2@TiO2@CdS/Au, FSTCA). Integrating the advantages of magnetic materials and all-solid-state Z-scheme heterostructures, FSTCA was implemented to ligate the capture antibody to form magnetic capture probe (FSTCA/Ab1). It can simplify the separation and washing process to improve reproducibility and stability, while allowing immune recognition to be performed in the liquid phase instead of the traditional solid-liquid interface to improve anti-interference. Besides, the heterojunction inhibited the recombination of photogenerated electron/hole (e-/h+) and promoted the light absorption to provide superior photoelectric substrate signal. The mechanism of photogenerated e−/h+ transfer of FSTCA were investigated by the electron spin resonance (ESR) spectroscopy. SiO2 spheres loaded with Au NPs utilized as an efficient signal quencher. The steric hindrance effect of SiO2@Au labeled detection antibodies (SiO2@Au-Ab2) conjugates significantly diminished light absorption and hindered the transfer of photogenerated electrons, further amplifying the signal change value. Based on the above merits, the elaborated immunosensor had a wide linear range of 10 pg mL−1 -100 ng mL−1 and a low detection limit down to 2.9 pg mL−1 (S/N = 3). The fabricated PEC immunosensor demonstrated strong anti-interference, easy operation, and high sensitivity, showing enormous potential in clinical diagnosis of SARS-CoV-2. Graphical
Search on Google
Collection: Databases of international organizations Database: EuropePMC Language: English Journal: Sensors and actuators. B, Chemical Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS

Search on Google
Collection: Databases of international organizations Database: EuropePMC Language: English Journal: Sensors and actuators. B, Chemical Year: 2022 Document Type: Article