Your browser doesn't support javascript.
Paleofire Data for Public Health Nursing Wildfire Planning: A Planetary Perspective
American Journal of Public Health ; 112:S241-S244, 2022.
Article in English | ProQuest Central | ID: covidwho-2047012
ABSTRACT
Public health Is Increasingly threatened by global warming, land use, and changing wildfire patterns that shape vegetation type, structure, and biodiversity and ultimately affect ecosystem services and our society.1 Uncontrolled large wildfires emit greenhouse gases and aerosols that induce direct and indirect climate feedback through radiative forcing in the atmosphere2 and irreversible changes of natural vegetation, thereby further accelerating climate change and associated fire risks.3 Wildfires are also harmful to human health because they create high pollution concentrations of fine particulate matter that are 2.5 micrometers or smaller (PM2.5) and concentrations of coarse particulate matter that are between 2.5 and 10 micrometers in size. When inhaled, particulate matter significantly increases a myriad of health outcomes, including overall mortality, cardiovascular mortality, and emergency department visits for respiratory morbidity, congestive heart failure, chronic obstructive pulmonary disease, and angina.4,5 Between July and October 2020, high PM2.5 concentrations from massive wildfires surrounding a large regional hospital in the western United States were associated with a 6% increase in COVID-19 cases.6 Risks for developing adverse health effects from wildfire smoke are greatest among people who are living with chronic conditions;who are experiencing intergenerational racial, economic, and housing discrimination;and who are facing social inequities from the COVID-19 pandemic.4The unprecedented recent wildfires in the western United States and their ill effects on human health and society, as well as the multiple other threats to people and places brought about by climate change, draw attention to the increasing urgency of developing new public health approaches and long-term adaptation strategies to support future population health. Observational fire data covering the past few decades give valuable information on current wildfire events.1 However, these data hardly capture long-term trends (i.e., centennial to millennial time scales) of wildfires and associated atmospheric emissions that may help to improve future fire models and thereby provide the base to adapt public health systems.3 To understand long-term trends, natural archives preserve fire history on a wide range ofspatial scales in the past beyond the period of observational fire data;examples include polar and highalpine ice cores;lake, peat, and marine sediment cores.3,8,9 Such paleofire records are based on measurements of the gaseous tracers ammonium and nitrate or particulate matter, such as levoglucosan and black carbon, and charcoal that reflect different components of wildfire-induced atmospheric smoke pollution.8,9 These paleofire records have previously identified complex regional interactions of humans, ecosystems, and climate change.3 Submicron-sized (100-500 nm in diameter) black carbon particles from wildfires and fossil fuel during the industrial era (i.e., the past 250 years) measured in ice cores and lake sediments can be used as a direct tracer for the release of harmful PM2.5 to the atmosphere.8,10 Such paleo black carbon records have been established from both polar and high-alpine glaciers on several continents and are recently developed from lake sediments.10 These found significant changes of fire activity in response to climate and human impact and enhanced pollution levels varying both in time and space. With public health nurses being well positioned to understand population health needs, planetary health, and the health consequences of wildfires, public health nurses can improve upon wildfire adaptation planning and essential public health services by understanding historical perspectives from past fires.9,11,13 Paleofire data provide direct estimates of historical atmospheric emissions from past wildfires and associated harmful concentrations of particulate matter over long distances.
Keywords
Search on Google
Collection: Databases of international organizations Database: ProQuest Central Language: English Journal: American Journal of Public Health Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS

Search on Google
Collection: Databases of international organizations Database: ProQuest Central Language: English Journal: American Journal of Public Health Year: 2022 Document Type: Article