Your browser doesn't support javascript.
Method to Find the Original Source of COVID-19 by Genome Sequence and Probability of Electron Capture
Lecture Notes on Data Engineering and Communications Technologies ; 149:214-230, 2023.
Article in English | Scopus | ID: covidwho-2048147
ABSTRACT
The purpose of this study was to find the original source of envelope protein (spiked surface) of the Covid-19. It was assumed that the envelope protein was related to ordinary proteins like the human liver enzymes as possible original sources. A comparison was made on the genome sequences of the envelope protein and the human liver enzymes. The results of computational experiments showed that the longest sequence, common in both groups, was as follows glutamine acid (e) - glutamine acid (e) - threonine (t) - glycine (g). Upon this finding further investigation was performed on the molecular structure of this sequence;and the probabilities of electron captures by the protons of the atoms were computed to determine which atoms could connect the amino acids using the approximation method taken from the quantum mechanics. The study was continued to identify which amino acid grew the genome sequence of the envelope protein differently from the human liver enzymes. And it was found that the electron capture by the proton of the atom could explain the process that formed the genome sequence of the Covid-19’s envelope protein out from the human liver enzymes. To our opinion this method could be used for identification of other candidate proteins so that to find the original source of the virus. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Lecture Notes on Data Engineering and Communications Technologies Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Lecture Notes on Data Engineering and Communications Technologies Year: 2023 Document Type: Article