Your browser doesn't support javascript.
The Spatial Variation of the Influence of Lockdown on Air Quality across China and Its Major Influencing Factors during COVID-19
Atmosphere ; 13(10):1597, 2022.
Article in English | MDPI | ID: covidwho-2065685
ABSTRACT
China has experienced a series of COVID-19 recurrences in different cities across the country since 2020, and relatively strict (full lockdown) or lenient closure (semi-lockdown) strategies have been employed accordingly in each city. The differences in detailed transmission control measures during lockdown periods led to distinct effects on air quality, which has rarely been studied. To fill this gap, we examined the effects of semi-lockdown and full lockdown on six major airborne pollutants, based on 55 lockdown cases. For all lockdown cases, the concentrations of PM2.5, PM10, SO2, NO2 and CO were much lower than in previous years. Specifically, due to the stricter transmission control, the concentration of the five airborne pollutants experienced a much sharper decline during full lockdown. However, O3 presented a different variation pattern during lockdown periods. Generally, O3 concentrations presented a slight increase in semi-lockdown cases and a notable increase in full lockdown cases. Meanwhile, O3 increased notably in northern China, particularly in the Beijing–Tianjin–Hebei region, while O3 had a slight variation in southern China. The unique variation of O3 across regions and lockdown types was mainly attributed to the spatial heterogeneity of O3 formation regimes, especially the VOCs-controlled O3 formation in northern China. Based on Geographical Detector, we examined the spatial continuity of natural and socio-economic factors on the variation of airborne pollutants during lockdown. In terms of meteorological factors, humidity and precipitation were the dominant factors for PM2.5 and PM10, respectively, while humidity and temperature were the dominant factors for O3. In terms of socio-economic factors, the numbers of taxis and private cars were the dominant factors for PM2.5 and O3 variations during lockdown. GD also revealed that the combination of natural and socio-economic factors had a significantly enhanced effect on airborne pollutants during lockdown. The combination of relative humidity and total area of urban built-up areas exerted the strongest interactive effects on both PM2.5 and O3. This research highlighted the challenge for urban O3 management, and suggested the control of VOCs emissions should be preferably considered, especially in northern China.

Full text: Available Collection: Databases of international organizations Database: MDPI Language: English Journal: Atmosphere Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: MDPI Language: English Journal: Atmosphere Year: 2022 Document Type: Article