Your browser doesn't support javascript.
Distribution and transport of atmospheric microplastics and the environmental impacts: A review
Kexue Tongbao/Chinese Science Bulletin ; 67(30):3565-3579, 2022.
Article in Chinese | Scopus | ID: covidwho-2098648
ABSTRACT
As emerging pollutants, microplastics (MPs) are widely distributed in water, soil and atmosphere, and have become a popularly concerned environmental and social issue. The research on atmospheric microplastics (AMPs) started later than that on the MPs in soil and water, but AMPs’ potential environmental impacts are explored in an even wider range. Based on the literatures on AMPs since 2015 as well as those about MPs in water and soil, this paper systematically reviews the distribution, source, transport of AMPS and the environmental and ecological impacts of AMPs. The results show that AMPs are distributed in global atmosphere, and have been detected in the atmosphere of urban, suburban, remote areas and indoor air. The concentrations of AMPs were detected in a range 2 to 77000 n m–2 d–1 or 0 to 1583 n m–3. The distribution characteristics of MPs in atmosphere are affected by environmental factors such as indoor and outdoor environment, underlying surface type and airflow, etc. In general, the concentration and the diversity of AMPs’ shape and composition are higher in the places near to MPs the source, but the wind, precipitation and even local animals could reshape the characters of AMPs. The sources of AMPs are mainly the production, use and recycling processes of plastic products, as well as land and sea where MPs accumulated. Studies also showed that abrasion of vehicle tires and the use of synthetic textile are major sources. What’s noteworthy is that the COVID-19 pandemic has made masks as necessities of life, which indirectly exacerbated the pollution of AMPs. The transport of MPs can occur in atmospheric environment, such as suspension, deposition and diffusion, and is affected by the morphology of MPs, wind direction, precipitation and other atmospheric factors. The diffusion of MPs in atmosphere, also known as atmospheric transport, is an important part of the global plastic cycle. AMPs’ transport path is mostly studied of Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) by conducting backward trajectory simulation, and their transport volume is estimated mainly through deposition and aerodynamic model. In addition, AMPs have unique physical and chemical properties, which can affect regional atmospheric environmental quality, change regional and global climate. It could also adsorb heavy metals, organic pollutants and harmful microorganisms during transport, resulting in greater health risks to human. Also, AMPs could affect atmospheric ecosystems through food chains and providing microbial niches, and alter structure and functions of terrestrial forest and water ecosystems through deposition. There are still some unsolved scientific and technical questions. Due to the lack of standardized sampling and identification means, the past research methods on AMPs are different on sampling and physical analysis, which make information comparison difficult. The observations of AMPs’ environmental behaviors, the atmospheric transport, source attribution and trans-regional effects of AMPs are still limited. Therefore, some conclusions from laboratory researches cannot fully explain the uncertainty of in natural environment. Based on the analysis, it is suggested that future scientific research on AMPs should focus on standardization of research methods, the establishment of source list, transport mechanism and environmental and ecological impacts. It is necessary for the study of AMPs to establish a set of scientifically credible and technically feasible monitoring techniques as well. Because AMPs could be transported to different ecosystems and could enter the human body through a variety of ways, it is urgent to study the physiological and ecological status of human body and ecosystems which are continuously exposed to AMPs pollution. © 2022 Chinese Academy of Sciences. All rights reserved.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Type of study: Experimental Studies Language: Chinese Journal: Chinese Science Bulletin Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Type of study: Experimental Studies Language: Chinese Journal: Chinese Science Bulletin Year: 2022 Document Type: Article