Your browser doesn't support javascript.
Identification and assessment of TCR-T cells targeting an epitope conserved in SARS-CoV-2 variants for the treatment of COVID-19.
Ma, Yipeng; Liu, Fenglan; Li, Bin; Peng, Kaiqi; Zhou, Hong; Xu, You; Qiao, Dongjuan; Deng, Lijuan; Tian, Geng; Nielsen, Morten; Wang, Mingjun.
  • Ma Y; Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China; Shenzhen Innovation Immunotechnology Co., Ltd. Shenzhen International Biological Valley-L
  • Liu F; Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China; Shenzhen Innovation Immunotechnology Co., Ltd. Shenzhen International Biological Valley-L
  • Li B; Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China; Shenzhen Innovation Immunotechnology Co., Ltd. Shenzhen International Biological Valley-L
  • Peng K; Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China; Shenzhen Innovation Immunotechnology Co., Ltd. Shenzhen International Biological Valley-L
  • Zhou H; Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China; Shenzhen Innovation Immunotechnology Co., Ltd. Shenzhen International Biological Valley-L
  • Xu Y; Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China; Shenzhen Innovation Immunotechnology Co., Ltd. Shenzhen International Biological Valley-L
  • Qiao D; Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China; Shenzhen Innovation Immunotechnology Co., Ltd. Shenzhen International Biological Valley-L
  • Deng L; Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China; Shenzhen Innovation Immunotechnology Co., Ltd. Shenzhen International Biological Valley-L
  • Tian G; Department of Oncology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
  • Nielsen M; Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark.
  • Wang M; Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China; Shenzhen Innovation Immunotechnology Co., Ltd. Shenzhen International Biological Valley-L
Int Immunopharmacol ; 112: 109283, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2105145
ABSTRACT

BACKGROUND:

Coronavirus disease 2019 (COVID-19) continues to be a major global public health challenge, with the emergence of variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current vaccines or monoclonal antibodies may not well be protect against infection with new SARS-CoV-2 variants. Unlike antibody-based treatment, T cell-based therapies such as TCR-T cells can target epitopes that are highly conserved across different SARS-CoV-2 variants. Reportedly, T cell-based immunity alone can restrict SARS-CoV-2 replication.

METHODS:

In this study, we identified two TCRs targeting the RNA-dependent RNA polymerase (RdRp) protein in CD8 + T cells. Functional evaluation by transducing these TCRs into CD8 + or CD4 + T cells confirmed their specificity.

RESULTS:

Combinations of inflammatory and anti-inflammatory cytokines secreted by CD8 + and CD4 + T cells can help control COVID-19 in patients. Moreover, the targeted epitope is highly conserved in all emerged SARS-CoV-2 variants, including the Omicron. It is also conserved in the seven coronaviruses that infect humans and more broadly in the subfamily Coronavirinae.

CONCLUSIONS:

The pan-genera coverage of mutant epitopes from the Coronavirinae subfamily by the two TCRs highlights the unique strengths of TCR-T cell therapies in controlling the ongoing pandemic and in preparing for the next coronavirus outbreak.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Experimental Studies Topics: Vaccines / Variants Limits: Humans Language: English Journal: Int Immunopharmacol Journal subject: Allergy and Immunology / Pharmacology Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Experimental Studies Topics: Vaccines / Variants Limits: Humans Language: English Journal: Int Immunopharmacol Journal subject: Allergy and Immunology / Pharmacology Year: 2022 Document Type: Article