Your browser doesn't support javascript.
S-allylmercapto-N-acetylcysteine ameliorates pulmonary fibrosis in mice via Nrf2 pathway activation and NF-κB, TGF-ß1/Smad2/3 pathway suppression.
Zhang, Qinxiu; Ye, Wenhui; Liu, Ying; Niu, Decao; Zhao, Xin; Li, Genjv; Qu, Ying; Zhao, Zhongxi.
  • Zhang Q; Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery System
  • Ye W; Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery System
  • Liu Y; Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery System
  • Niu D; Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery System
  • Zhao X; Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery System
  • Li G; Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery System
  • Qu Y; Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery System
  • Zhao Z; Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery System
Biomed Pharmacother ; 157: 114018, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2246726
ABSTRACT
Pulmonary fibrosis (PF) is a chronic lung disease characterised by alveolar inflammatory injury, alveolar septal thickening, and eventually fibrosis. Patients with severe Coronavirus Disease 2019 (COVID-19) may have left a certain degree of pulmonary fibrosis. PF is commonly caused by oxidative imbalance and inflammatory damage. S-allylmercapto-N-acetylcysteine (ASSNAC) exhibits anti-oxidative and anti-inflammatory effects in other diseases. However, the pharmacodynamics of ASSNAC remain unclear for PF. This investigation aimed to evaluate the efficacy and mechanism of ASSNAC against PF. The PF model was established by TGF-ß1 stimulating HFL-1 cells in vitro. ASSNAC exhibited the potential to inhibit fibroblast transformation into myofibroblasts. Also, in the PF mice model with bleomycin (BLM), the sodium salt of ASSNAC (ASSNAC-Na) inhalation was treated. ASSNAC remarkably improved mice's lung tissue structure and collagen deposition. The important indicator proteins of PF, collagen Ⅰ, collagen Ⅲ, and α-SMA significantly decreased in the ASSNAC treated groups. Besides, ASSNAC attenuated oxidative stress by reversing glutathione (GSH), superoxide dismutase (SOD) levels and interfering with Nrf2/NOX4 signaling pathways. ASSNAC showed an anti-inflammatory effect by reducing the number of inflammatory cells and inflammatory cytokines, such as TNF-α and IL-6, and blocking the NF-κB signaling pathway. ASSNAC inhibited fibroblast differentiation by blocking the TGF-ß1/Smad2/3 signaling pathway. This study implicates that ASSNAC alleviates pulmonary fibrosis through fighting against oxidative stress, reducing inflammation and inhibiting fibroblast differentiation.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Experimental Studies / Randomized controlled trials Language: English Journal: Biomed Pharmacother Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Experimental Studies / Randomized controlled trials Language: English Journal: Biomed Pharmacother Year: 2022 Document Type: Article