Your browser doesn't support javascript.
Translocation pause of remdesivir-containing primer/template RNA duplex within SARS-CoV-2's RNA polymerase complexes.
Shi, Yuanjun; Wang, Jimin; Batista, Victor S.
  • Shi Y; Department of Chemistry, Yale University, New Haven, CT, United States.
  • Wang J; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.
  • Batista VS; Department of Chemistry, Yale University, New Haven, CT, United States.
Front Mol Biosci ; 9: 999291, 2022.
Article in English | MEDLINE | ID: covidwho-2121774
ABSTRACT
The mechanism of remdesivir incorporation into the RNA primer by the RNA-dependent RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remains to be fully established at the molecular level. Here, we compare molecular dynamics (MD) simulations after incorporation of either remdesivir monophosphate (RMP) or adenosine monophosphate (AMP). We find that the Mg2+-pyrophosphate (PPi) binds more tightly to the polymerase when the added RMP is at the third primer position than in the AMP added complex. The increased affinity of Mg2+-PPi to the RMP-added primer/template (P/T) RNA duplex complex introduces a new hydrogen bond of a substituted cyano group in RMP with the K593 sidechain. The new interactions disrupt a switching mechanism of a hydrogen bond network that is essential for translocation of the P/T duplex product and for opening of a vacant NTP-binding site necessary for next primer extension. Furthermore, steric interactions between the sidechain of S861 and the 1'-cyano group of RMP at position i+3 hinders translocation of RMP to the i + 4 position, where i labels the insertion site. These findings are particularly valuable to guide the design of more effective inhibitors of SARS-CoV-2 RNA polymerase.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Language: English Journal: Front Mol Biosci Year: 2022 Document Type: Article Affiliation country: Fmolb.2022.999291

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Language: English Journal: Front Mol Biosci Year: 2022 Document Type: Article Affiliation country: Fmolb.2022.999291