Your browser doesn't support javascript.
Tracking the Flu Virus in a Room Mechanical Ventilation Using CFD Tools and Effective Disinfection of an HVAC System
International Journal of Air-Conditioning and Refrigeration ; 28(2), 2020.
Article in English | ProQuest Central | ID: covidwho-2138152
ABSTRACT
Recent concerns raised by the World Health Organization over the Coronavirus raised a worldwide reaction. Governments are racing to contain and stop the Coronavirus from reaching an epidemic/pandemic status. This research presents a way in tracking such a virus or any contagious germ capable of transferring through air specifically where such a transfer can be assisted by a mechanical room ventilation system. Tracking the spread of such a virus is a complicated process, as they can exist in a variety of forms, shapes, sizes, and can change with time. However, a beginning has to be made at some point. Assumptions had to be made based on published scientific data, and standards. The tracking of airborne viruses was carried out on the following assumption (for illustrative purposes);one person with one sneeze in a period of 600 s. The presence of viruses was tracked with curves plotted indicating how long it could take to remove the sneezed viruses from the mechanically ventilated room space. Results gave an indication of what time span is required to remove airborne viruses. Thus, we propose the following (a) utilizing CFD software as a possible tool in optimizing a mechanical ventilation system in removing contagious viruses. This will track the dispersion of viruses and their removal. The numerical solution revealed that with one typical adult human sneeze, it can take approximately 640 s to reduce an average sneeze of 20,000 droplets to a fifth;(b) upscaling the status of human comfort to a “must have” with regards to the 50% relative humidity, and the use of Ultraviolet germicidal irradiation (UVGI) air disinfection in an epidemic/pandemic condition. A recommendation can be presented to the local authorities of jurisdiction in enforcing the above proposals partially/fully as seen fit as “prevention is better than cure”. This will preclude the spread of highly infectious viruses in mechanically ventilated buildings.
Keywords

Full text: Available Collection: Databases of international organizations Database: ProQuest Central Type of study: Experimental Studies Language: English Journal: International Journal of Air-Conditioning and Refrigeration Year: 2020 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: ProQuest Central Type of study: Experimental Studies Language: English Journal: International Journal of Air-Conditioning and Refrigeration Year: 2020 Document Type: Article