Your browser doesn't support javascript.
Rapid point-of-care detection of SARS-CoV-2 RNA with smartphone-based upconversion luminescence diagnostics
Biosensors & bioelectronics ; 2022.
Article in English | EuropePMC | ID: covidwho-2147699
ABSTRACT
Accurate COVID-19 screening via molecular technologies is still hampered by bulky instrumentation, complicated procedure, high cost, lengthy testing time, and the need for specialized personnel. Herein, we develop point-of-care upconversion luminescence diagnostics (PULD), and a streamlined smartphone-based portable platform facilitated by a ready-to-use assay for rapid SARS-CoV-2 nucleocapsid (N) gene testing. With the complementary oligo-modified upconversion nanoprobes and gold nanoprobes specifically hybridized with the target N gene, the luminescence resonance energy transfer effect leads to a quenching of fluorescence intensity that can be detected by the easy-to-use diagnostic system. A remarkable detection limit of 11.46 fM is achieved in this diagnostic platform without the need of target amplification, demonstrating high sensitivity and signal-to-noise ratio of the assay. The capability of the developed PULD is further assessed by probing 9 RT-qPCR-validated SARS-CoV-2 variant clinical samples (B.1.1.529/Omicron) within 20 mins, producing reliable diagnostic results consistent with those obtained from a standard fluorescence spectrometer. Importantly, PULD is capable of identifying the positive COVID-19 samples with superior sensitivity and specificity, making it a promising front-line tool for rapid, high-throughput screening and infection control of COVID-19 or other infectious diseases.
Search on Google
Collection: Databases of international organizations Database: EuropePMC Language: English Journal: Biosensors & bioelectronics Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS

Search on Google
Collection: Databases of international organizations Database: EuropePMC Language: English Journal: Biosensors & bioelectronics Year: 2022 Document Type: Article