Your browser doesn't support javascript.
Bioinformatical Design and Performance Evaluation of a Nucleocapsid- and an RBD-Based Particle Enhanced Turbidimetric Immunoassay (PETIA) to Quantify the Wild Type and Variants of Concern-Derived Immunoreactivity of SARS-CoV-2.
Wey, Leoni; Masetto, Thomas; Spaeth, Alexander; Brehm, Jessica; Kochem, Christian; Reinhart, Marco; Müller, Holger; Kempin, Uwe; Lorenz, Franziska; Peter, Christoph; Grimmler, Matthias.
  • Wey L; DiaSys Diagnostic Systems GmbH, Alte Str. 9, 65558 Holzheim, Germany.
  • Masetto T; Hochschule Fresenius Gem. Trägergesellschaft mbH, University of Applied Sciences, Limburger Str. 2, 65510 Idstein, Germany.
  • Spaeth A; DiaSys Diagnostic Systems GmbH, Alte Str. 9, 65558 Holzheim, Germany.
  • Brehm J; Institut für Molekulare Medizin I, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany.
  • Kochem C; MVZ Medizinische Labore Dessau Kassel GmbH, Bauhüttenstr. 6, 06847 Dessau-Roßlau, Germany.
  • Reinhart M; MVZ Medizinische Labore Dessau Kassel GmbH, Bauhüttenstr. 6, 06847 Dessau-Roßlau, Germany.
  • Müller H; DiaSys Diagnostic Systems GmbH, Alte Str. 9, 65558 Holzheim, Germany.
  • Kempin U; GfA GmbH, Allgäuer Str. 1, 87459 Pfronten, Germany.
  • Lorenz F; DiaSys Diagnostic Systems GmbH, Alte Str. 9, 65558 Holzheim, Germany.
  • Peter C; pes Medizinische Diagnosesysteme GmbH, Hauptstr. 103, 04416 Markkleeberg, Germany.
  • Grimmler M; MVZ Medizinische Labore Dessau Kassel GmbH, Bauhüttenstr. 6, 06847 Dessau-Roßlau, Germany.
Biomedicines ; 11(1)2023 Jan 08.
Article in English | MEDLINE | ID: covidwho-2166242
ABSTRACT
Since SARS-CoV-2 emerged in December 2019 in Wuhan, the resulting pandemic has paralyzed the economic and cultural life of the world. Variants of concern (VOC) strongly increase pressure on public health systems. Rapid, easy-to-use, and cost-effective assays are essential to manage the pandemic. Here we present a bioinformatical approach for the fast and efficient design of two innovative serological Particle Enhanced Turbidimetric Immunoassays (PETIA) to quantify the SARS-CoV-2 immunoresponse. To confirm bioinformatical assumptions, an S-RBD- and a Nucleocapsid-based PETIA were produced. Sensitivity and specificity were compared for 95 patient samples using a BioMajesty™ fully automated analyzer. The S-RBD-based PETIA showed necessary specificity (98%) over the N protein-based PETIA (21%). Further, the reactivity and cross-reactivity of the RBD-based PETIA towards variant-derived antibodies of SARS-CoV-2 were assessed by a quenching inhibition test. The inhibition kinetics of the S-RBD variants Alpha, Beta, Delta, Gamma, Kappa, and Omicron were evaluated. In summary, we showed that specific and robust PETIA immunoassays can be rapidly designed and developed. The quantification of the SARS-CoV-2-related immunoresponse of variants (Alpha to Kappa) is possible using specific RBD assays. In contrast, Omicron revealed lower cross-reactivity (approx. 50%). To ensure the quantification of the Omicron variant, modified immunoassays appear to be necessary.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Diagnostic study / Experimental Studies / Randomized controlled trials Topics: Variants Language: English Year: 2023 Document Type: Article Affiliation country: Biomedicines11010160

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Diagnostic study / Experimental Studies / Randomized controlled trials Topics: Variants Language: English Year: 2023 Document Type: Article Affiliation country: Biomedicines11010160