Your browser doesn't support javascript.
Investigation on the interaction mechanism of different SARS-CoV-2 spike variants with hACE2: insights from molecular dynamics simulations.
Wu, Jianhua; Zhang, Hong-Xing; Zhang, Jilong.
  • Wu J; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People's Republic of China. zhanghx@jlu.edu.cn.
  • Zhang HX; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People's Republic of China. zhanghx@jlu.edu.cn.
  • Zhang J; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People's Republic of China. zhanghx@jlu.edu.cn.
Phys Chem Chem Phys ; 25(3): 2304-2319, 2023 Jan 18.
Article in English | MEDLINE | ID: covidwho-2186140
ABSTRACT
Since the COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), SARS-CoV-2 has evolved by acquiring genomic mutations, resulting in the recent emergence of several SARS-CoV-2 variants with improved transmissibility and infectivity relative to the original strain. An underlying mechanism may be the increased ability of the mutants to bind the receptor proteins and infect the host cell. In this work, we implemented all-atom molecular dynamics (MD) simulations to study the binding and interaction of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein singly (D614G), doubly (D614G + L452R and D614G + N501Y), triply (D614G + N501Y + E484K), and quadruply (D614G + N501Y + E484K + K417T) mutated variants with the human angiotensin-converting enzyme 2 (hACE2) receptor protein in the host cell. A combination of multiple analysis approaches elucidated the effects of mutations and the extent of molecular divergence from multiple perspectives, including the dynamic correlated motions, interaction patterns, dominant motions, free energy landscape, and charge distribution on the electrostatic potential surface between the hACE2 and all RBD variants. Moreover, free energy calculations using the MM/PBSA method evaluated the binding affinity between these RBD variants and hACE2. The results showed that the D614G + N501Y + E484K variant possessed the lowest free energy value (highest affinity) compared to the D614G + N501Y + E484K + K417T, D614G + L452R, D614G + N501Y, and D614G mutants. The residue-based energy decomposition also indicated that the energy contribution of residues at the mutation site to the total binding energy was highly variable. The interaction mechanisms between the different RBD variants and hACE2 elucidated in this study will provide some insights into the development of drugs targeting the new SARS-CoV-2 variants.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Spike Glycoprotein, Coronavirus / Angiotensin-Converting Enzyme 2 / SARS-CoV-2 / COVID-19 Type of study: Experimental Studies Topics: Variants Limits: Humans Language: English Journal: Phys Chem Chem Phys Journal subject: Biophysics / Chemistry Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Spike Glycoprotein, Coronavirus / Angiotensin-Converting Enzyme 2 / SARS-CoV-2 / COVID-19 Type of study: Experimental Studies Topics: Variants Limits: Humans Language: English Journal: Phys Chem Chem Phys Journal subject: Biophysics / Chemistry Year: 2023 Document Type: Article