Your browser doesn't support javascript.
Integrated Quantitative Systems Pharmacology (QSP) Characterizing Viral Dynamics After Intramuscular (IM) Adintrevimab (ADI) Administration in Participants with Mild to Moderate Coronavirus Disease (COVID-19)
Open Forum Infectious Diseases ; 9(Supplement 2):S483-S484, 2022.
Article in English | EMBASE | ID: covidwho-2189785
ABSTRACT
Background. ADI is a fully human IgG1 monoclonal antibody engineered to have an extended half-life with high potency and broad neutralization against SARS-CoV-2 and other SARS-like coronaviruses. The goal of our analysis was to develop a QSP model in which ADI concentrations in upper airway (UA) epithelial lining fluid (ELF) were linked to a viral dynamic model to describe the impact of ADI on SARS-CoV-2 viral load relative to placebo. Methods. The QSP model was fit inNONMEMVersion 7.4 using PK data from a Phase 1 study (N=24, IV and IM) and from Phase 2/3 COVID-19 prevention (EVADE;N=659, IM) and treatment (STAMP;N=189, IM) studies. Saliva and NP samples were collected from STAMP study participants (pts) infected with the delta or omicron variants. The viral dynamic model was based on a published model and was modified to include both active (V) and deactivated (DV) virus (Fig). The viral dynamic model was fit to the NP swab viral load data (2 samples/pt) standardized to time since infection based upon recorded symptom onset. Saliva data (7-8 samples/ pt) was fit sequentially using a biophase compartment given the peak viral load was modestly lower and peaked later than Day 1. Viral dynamic model (A) and simulated median (90% PI) NP viral load reduction in ADI-treated or placebo participants for delta (B) and omicron (C) variants Results. The QSP model provided an excellent fit to serum ADI concentrationtime data after estimation of a transit rate to account for IM absorption, plasma volume, and the ADI-neonatal Fc receptor dissociation rate constant. The linked viral dynamic model captured the NP swab viral load data after estimating differences in within-host replication factor (R0) and viral production rate (p) by variant. Maximal ADI-induced effect (Smax) on stimulating viral clearance (c) was fixed to 0.43 based upon prior modeling. ADI concentration in UA ELF resulting in 50% of Smax (SC50) was estimated to be 0.086 for delta and 1.05 mg/L for omicron. Figure B and C show model-based simulated median (90% PI) viral load reduction in ADI-treated or placebo pts for delta and omicron variants. Conclusion. This QSP model, in conjunction with information on new variants available early in outbreaks (IC50, infectivity (R0), viral production rate [each a model parameter]), allows for rapid dose identification in response to emerging variants.
Keywords

Full text: Available Collection: Databases of international organizations Database: EMBASE Language: English Journal: Open Forum Infectious Diseases Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: EMBASE Language: English Journal: Open Forum Infectious Diseases Year: 2022 Document Type: Article