Your browser doesn't support javascript.
Multi-hop Clustering Routing Protocol Based on Improved Coronavirus Herd Immunity Optimizer and Q-Learning in WSNs
IEEE Sensors Journal ; : 1-1, 2022.
Article in English | Scopus | ID: covidwho-2192001
ABSTRACT
Wireless sensor networks (WSNs) are composed of a large number of spatially distributed sensor nodes to monitor and transmit information from the environment. However, the batteries used by these sensor nodes have limited energy and can not be charged or replaced due to the harsh deployment environment. This energy limitation will seriously affect the lifetime of the network. Therefore, the purpose of this research is to reduce energy consumption and balance the load of sensor nodes by clustering routing protocols, so as to prolong the lifetime of the network. Firstly, the coronavirus herd immune optimizer is improved and used to optimize the network clustering. Secondly, the cluster heads are selected according to the energy and location factors in the clusters, and a reasonable cluster head replacement mechanism is designed to avoid the extra communication energy consumption caused by the frequent replacement of cluster heads. Finally, a multi-hop routing mechanism between the cluster heads and the base station is constructed by Q-learning. Simulation results show that the proposed work can improve the structure of clusters, enhance the load balance of nodes, reduce network energy consumption and prolong the network lifetime. The appearance time of the first energy-depleted node is delayed by 25.8%, 85.9% and 162.2% compared with IGWO, ACA-LEACH and DEAL in the monitoring area of 300m ×300m, respectively. In addition, the proposed protocol shows better adaptability in varying dynamic conditions. IEEE
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: IEEE Sensors Journal Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: IEEE Sensors Journal Year: 2022 Document Type: Article