Your browser doesn't support javascript.
Global Dynamics of a Within-Host COVID-19/AIDS Coinfection Model with Distributed Delays
Journal of Mathematics ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-2194243
ABSTRACT
Acquired immunodeficiency syndrome (AIDS) is a spectrum of conditions caused by infection with the human immunodeficiency virus (HIV). Among people with AIDS, cases of COVID-19 have been reported in many countries. COVID-19 (coronavirus disease 2019) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this manuscript, we are going to present a within-host COVID-19/AIDS coinfection model to study the dynamics and influence of the coinfection between COVID-19 and AIDS. The model is a six-dimensional delay differential equation that describes the interaction between uninfected epithelial cells, infected epithelial cells, free SARS-CoV-2 particles, uninfected CD4+ T cells, infected CD4+ T cells, and free HIV-1 particles. We demonstrated that the proposed model is biologically acceptable by proving the positivity and boundedness of the model solutions. The global stability analysis of the model is carried out in terms of the basic reproduction number. Numerical simulations are carried out to investigate that if COVID-19/AIDS coinfected individuals have a poor immune response or a low number of CD4+ T cells, then the viral load of SARS-CoV-2 and the number of infected epithelial cells will rise. On the contrary, the existence of time delays can rise the number of uninfected CD4+ T cells and uninfected epithelial cells, thus reducing the viral load within the host.
Keywords

Full text: Available Collection: Databases of international organizations Database: ProQuest Central Language: English Journal: Journal of Mathematics Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: ProQuest Central Language: English Journal: Journal of Mathematics Year: 2022 Document Type: Article