Your browser doesn't support javascript.
Real-time analysis of hospital length of stay in a mixed SARS-CoV-2 Omicron and Delta epidemic in New South Wales, Australia.
Tobin, Ruarai J; Wood, James G; Jayasundara, Duleepa; Sara, Grant; Walker, Camelia R; Martin, Genevieve E; McCaw, James M; Shearer, Freya M; Price, David J.
  • Tobin RJ; Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia. ruarai.tobin@unimelb.edu.au.
  • Wood JG; School of Population Health, University of New South Wales, Sydney, Australia.
  • Jayasundara D; System Information and Analytics Branch, New South Wales Ministry of Health, Sydney, Australia.
  • Sara G; System Information and Analytics Branch, New South Wales Ministry of Health, Sydney, Australia.
  • Walker CR; Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
  • Martin GE; School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia.
  • McCaw JM; Department of Infectious Diseases, Melbourne Medical School, The University of Melbourne, Melbourne, Australia.
  • Shearer FM; Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia.
  • Price DJ; Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Melbourne, Australia.
BMC Infect Dis ; 23(1): 28, 2023 Jan 17.
Article in English | MEDLINE | ID: covidwho-2196092
ABSTRACT

BACKGROUND:

The distribution of the duration that clinical cases of COVID-19 occupy hospital beds (the 'length of stay') is a key factor in determining how incident caseloads translate into health system burden. Robust estimation of length of stay in real-time requires the use of survival methods that can account for right-censoring induced by yet unobserved events in patient progression (e.g. discharge, death). In this study, we estimate in real-time the length of stay distributions of hospitalised COVID-19 cases in New South Wales, Australia, comparing estimates between a period where Delta was the dominant variant and a subsequent period where Omicron was dominant.

METHODS:

Using data on the hospital stays of 19,574 individuals who tested positive to COVID-19 prior to admission, we performed a competing-risk survival analysis of COVID-19 clinical progression.

RESULTS:

During the mixed Omicron-Delta epidemic, we found that the mean length of stay for individuals who were discharged directly from ward without an ICU stay was, for age groups 0-39, 40-69 and 70 +, respectively, 2.16 (95% CI 2.12-2.21), 3.93 (95% CI 3.78-4.07) and 7.61 days (95% CI 7.31-8.01), compared to 3.60 (95% CI 3.48-3.81), 5.78 (95% CI 5.59-5.99) and 12.31 days (95% CI 11.75-12.95) across the preceding Delta epidemic (1 July 2021-15 December 2021). We also considered data on the stays of individuals within the Hunter New England Local Health District, where it was reported that Omicron was the only circulating variant, and found mean ward-to-discharge length of stays of 2.05 (95% CI 1.80-2.30), 2.92 (95% CI 2.50-3.67) and 6.02 days (95% CI 4.91-7.01) for the same age groups.

CONCLUSIONS:

Hospital length of stay was substantially reduced across all clinical pathways during a mixed Omicron-Delta epidemic compared to a prior Delta epidemic, contributing to a lessened health system burden despite a greatly increased infection burden. Our results demonstrate the utility of survival analysis in producing real-time estimates of hospital length of stay for assisting in situational assessment and planning of the COVID-19 response.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Experimental Studies / Observational study / Prognostic study / Randomized controlled trials Topics: Variants Limits: Humans Country/Region as subject: Oceania Language: English Journal: BMC Infect Dis Journal subject: Communicable Diseases Year: 2023 Document Type: Article Affiliation country: S12879-022-07971-6

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Experimental Studies / Observational study / Prognostic study / Randomized controlled trials Topics: Variants Limits: Humans Country/Region as subject: Oceania Language: English Journal: BMC Infect Dis Journal subject: Communicable Diseases Year: 2023 Document Type: Article Affiliation country: S12879-022-07971-6