Your browser doesn't support javascript.
Impact of neutrophil extracellular traps on fluid properties, blood flow and complement activation.
Burmeister, Antonia; Vidal-Y-Sy, Sabine; Liu, Xiaobo; Mess, Christian; Wang, Yuanyuan; Konwar, Swagata; Tschongov, Todor; Häffner, Karsten; Huck, Volker; Schneider, Stefan W; Gorzelanny, Christian.
  • Burmeister A; Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  • Vidal-Y-Sy S; Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  • Liu X; Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  • Mess C; Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  • Wang Y; Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  • Konwar S; Department of Internal Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  • Tschongov T; Department of Internal Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  • Häffner K; Department of Internal Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  • Huck V; Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  • Schneider SW; Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  • Gorzelanny C; Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Front Immunol ; 13: 1078891, 2022.
Article in English | MEDLINE | ID: covidwho-2198917
ABSTRACT

Introduction:

The intravascular formation of neutrophil extracellular traps (NETs) is a trigger for coagulation and blood vessel occlusion. NETs are released from neutrophils as a response to strong inflammatory signals in the course of different diseases such as COVID-19, cancer or antiphospholipid syndrome. NETs are composed of large, chromosomal DNA fibers decorated with a variety of proteins such as histones. Previous research suggested a close mechanistic crosstalk between NETs and the coagulation system involving the coagulation factor XII (FXII), von Willebrand factor (VWF) and tissue factor. However, the direct impact of NET-related DNA fibers on blood flow and blood aggregation independent of the coagulation cascade has remained elusive.

Methods:

In the present study, we used different microfluidic setups in combination with fluorescence microscopy to investigate the influence of neutrophil-derived extracellular DNA fibers on blood rheology, intravascular occlusion and activation of the complement system.

Results:

We found that extended DNA fiber networks decelerate blood flow and promote intravascular occlusion of blood vessels independent of the plasmatic coagulation. Associated with the DNA dependent occlusion of the flow channel was the strong activation of the complement system characterized by the production of complement component 5a (C5a). Vice versa, we detected that the local activation of the complement system at the vascular wall was a trigger for NET release.

Discussion:

In conclusion, we found that DNA fibers as the principal component of NETs are sufficient to induce blood aggregation even in the absence of the coagulation system. Moreover, we discovered that complement activation at the endothelial surface promoted NET formation. Our data envisions DNA degradation and complement inhibition as potential therapeutic strategies in NET-induced coagulopathies.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Extracellular Traps / COVID-19 Type of study: Experimental Studies / Prognostic study Limits: Humans Language: English Journal: Front Immunol Year: 2022 Document Type: Article Affiliation country: Fimmu.2022.1078891

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Extracellular Traps / COVID-19 Type of study: Experimental Studies / Prognostic study Limits: Humans Language: English Journal: Front Immunol Year: 2022 Document Type: Article Affiliation country: Fimmu.2022.1078891