Your browser doesn't support javascript.
An Artificial Approach for the Fractional Order Rape and Its Control Model
Cmc-Computers Materials & Continua ; 74(2):3421-3438, 2023.
Article in English | Web of Science | ID: covidwho-2205943
ABSTRACT
The current investigations provide the solutions of the nonlinear fractional order mathematical rape and its control model using the strength of artificial neural networks (ANNs) along with the Levenberg-Marquardt back -propagation approach (LMBA), i.e., artificial neural networks-Levenberg-Marquardt backpropagation approach (ANNs-LMBA). The fractional order investigations have been presented to find more realistic results of the mathe-matical form of the rape and its control model. The differential mathematical form of the nonlinear fractional order mathematical rape and its control model has six classes susceptible native girls, infected immature girls, sus-ceptible knowledgeable girls, infected knowledgeable girls, susceptible rapist population and infective rapist population. The rape and its control differ-ential system using three different fractional order values is authenticated to perform the correctness of ANNs-LMBA. The data is used to present the rape and its control differential system is designated as 70% for training, 14% for authorization and 16% for testing. The obtained performances of the ANNs-LMBA are compared with the dataset of the Adams-Bashforth-Moulton scheme. To substantiate the consistency, aptitude, validity, exactness, and capability of the LMBA neural networks, the obtained numerical values are provided using the state transitions (STs), correlation, regression, mean square error (MSE) and error histograms (EHs).
Keywords

Full text: Available Collection: Databases of international organizations Database: Web of Science Language: English Journal: Cmc-Computers Materials & Continua Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Web of Science Language: English Journal: Cmc-Computers Materials & Continua Year: 2023 Document Type: Article