Your browser doesn't support javascript.
Generating simple classification rules to predict local surges in COVID-19 hospitalizations.
Yaesoubi, Reza; You, Shiying; Xi, Qin; Menzies, Nicolas A; Tuite, Ashleigh; Grad, Yonatan H; Salomon, Joshua A.
  • Yaesoubi R; Department of Health Policy and Management, Yale School of Public Health, 350 George Street, Room 308, New Haven, CT, 06510, USA. reza.yaesoubi@yale.edu.
  • You S; Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA. reza.yaesoubi@yale.edu.
  • Xi Q; Department of Health Policy and Management, Yale School of Public Health, 350 George Street, Room 308, New Haven, CT, 06510, USA.
  • Menzies NA; Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA.
  • Tuite A; Department of Health Policy and Management, Yale School of Public Health, 350 George Street, Room 308, New Haven, CT, 06510, USA.
  • Grad YH; Department of Global Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
  • Salomon JA; Epidemiology Division, University of Toronto Dalla Lana School of Public Health, Toronto, Ontario, Canada.
Health Care Manag Sci ; 26(2): 301-312, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2209415
ABSTRACT
Low rates of vaccination, emergence of novel variants of SARS-CoV-2, and increasing transmission relating to seasonal changes and relaxation of mitigation measures leave many US communities at risk for surges of COVID-19 that might strain hospital capacity, as in previous waves. The trajectories of COVID-19 hospitalizations differ across communities depending on their age distributions, vaccination coverage, cumulative incidence, and adoption of risk mitigating behaviors. Yet, existing predictive models of COVID-19 hospitalizations are almost exclusively focused on national- and state-level predictions. This leaves local policymakers in urgent need of tools that can provide early warnings about the possibility that COVID-19 hospitalizations may rise to levels that exceed local capacity. In this work, we develop a framework to generate simple classification rules to predict whether COVID-19 hospitalization will exceed the local hospitalization capacity within a 4- or 8-week period if no additional mitigating strategies are implemented during this time. This framework uses a simulation model of SARS-CoV-2 transmission and COVID-19 hospitalizations in the US to train classification decision trees that are robust to changes in the data-generating process and future uncertainties. These generated classification rules use real-time data related to hospital occupancy and new hospitalizations associated with COVID-19, and when available, genomic surveillance of SARS-CoV-2. We show that these classification rules present reasonable accuracy, sensitivity, and specificity (all ≥ 80%) in predicting local surges in hospitalizations under numerous simulated scenarios, which capture substantial uncertainties over the future trajectories of COVID-19. Our proposed classification rules are simple, visual, and straightforward to use in practice by local decision makers without the need to perform numerical computations.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: COVID-19 Type of study: Diagnostic study / Observational study / Prognostic study Topics: Vaccines / Variants Limits: Humans Language: English Journal: Health Care Manag Sci Journal subject: Health Services Year: 2023 Document Type: Article Affiliation country: S10729-023-09629-4

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: COVID-19 Type of study: Diagnostic study / Observational study / Prognostic study Topics: Vaccines / Variants Limits: Humans Language: English Journal: Health Care Manag Sci Journal subject: Health Services Year: 2023 Document Type: Article Affiliation country: S10729-023-09629-4