Your browser doesn't support javascript.
Potential antiviral effects of pantethine against SARS-CoV-2.
Abou-Hamdan, M; Saleh, R; Mani, S; Dournaud, P; Metifiot, M; Blondot, M L; Andreola, M L; Abdel-Sater, F; De Reggi, M; Gressens, P; Laforge, M.
  • Abou-Hamdan M; NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France.
  • Saleh R; Biology Department, Faculty of Sciences (I), Lebanese University, Beirut, Lebanon.
  • Mani S; NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France.
  • Dournaud P; NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France.
  • Metifiot M; NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France.
  • Blondot ML; Université Bordeaux, CNRS, UMR 5234, Microbiologie Fondamentale et Pathogénicité, 33076, Bordeaux, France.
  • Andreola ML; Université Bordeaux, CNRS, UMR 5234, Microbiologie Fondamentale et Pathogénicité, 33076, Bordeaux, France.
  • Abdel-Sater F; Université Bordeaux, CNRS, UMR 5234, Microbiologie Fondamentale et Pathogénicité, 33076, Bordeaux, France.
  • De Reggi M; Biochemistry Department, Faculty of Sciences (I), Lebanese University, Beirut, Lebanon.
  • Gressens P; NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France.
  • Laforge M; NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France.
Sci Rep ; 13(1): 2237, 2023 02 08.
Article in English | MEDLINE | ID: covidwho-2227022
ABSTRACT
SARS-CoV-2 interacts with cellular cholesterol during many stages of its replication cycle. Pantethine was reported to reduce total cholesterol levels and fatty acid synthesis and potentially alter different processes that might be involved in the SARS-CoV-2 replication cycle. Here, we explored the potential antiviral effects of pantethine in two in vitro experimental models of SARS-CoV-2 infection, in Vero E6 cells and in Calu-3a cells. Pantethine reduced the infection of cells by SARS-CoV-2 in both preinfection and postinfection treatment regimens. Accordingly, cellular expression of the viral spike and nucleocapsid proteins was substantially reduced, and we observed a significant reduction in viral copy numbers in the supernatant of cells treated with pantethine. In addition, pantethine inhibited the infection-induced increase in TMPRSS2 and HECT E3 ligase expression in infected cells as well as the increase in antiviral interferon-beta response and inflammatory gene expression in Calu-3a cells. Our results demonstrate that pantethine, which is well tolerated in humans, was very effective in controlling SARS-CoV-2 infection and might represent a new therapeutic drug that can be repurposed for the prevention or treatment of COVID-19 and long COVID syndrome.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Experimental Studies Topics: Long Covid Limits: Animals / Humans Language: English Journal: Sci Rep Year: 2023 Document Type: Article Affiliation country: S41598-023-29245-0

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Experimental Studies Topics: Long Covid Limits: Animals / Humans Language: English Journal: Sci Rep Year: 2023 Document Type: Article Affiliation country: S41598-023-29245-0