Your browser doesn't support javascript.
In silico evaluation of the impact of Omicron variant of concern sublineage BA.4 and BA.5 on the sensitivity of RT-qPCR assays for SARS-CoV-2 detection using whole genome sequencing.
Sharma, Divya; Notarte, Kin I; Fernandez, Rey A; Lippi, Giuseppe; Gromiha, Michael M; Henry, Brandon M.
  • Sharma D; Protein Bioinformatics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
  • Notarte KI; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
  • Fernandez RA; Ateneo de Manila University Professional Schools, Rockwell Center, Makati, Philippines.
  • Lippi G; Section of Clinical Biochemistry, University of Verona, Verona, Italy.
  • Gromiha MM; Protein Bioinformatics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
  • Henry BM; Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
J Med Virol ; : e28241, 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2235487
ABSTRACT

BACKGROUND:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VoC) Omicron (B.1.1.529) has rapidly spread around the world, presenting a new threat to global public human health. Due to the large number of mutations accumulated by SARS-CoV-2 Omicron, concerns have emerged over potentially reduced diagnostic accuracy of reverse-transcription polymerase chain reaction (RT-qPCR), the gold standard diagnostic test for diagnosing coronavirus disease 2019 (COVID-19). Thus, we aimed to assess the impact of the currently endemic Omicron sublineages BA.4 and BA.5 on the integrity and sensitivity of RT-qPCR assays used for coronavirus disease 2019 (COVID-19) diagnosis via in silico analysis. We employed whole genome sequencing data and evaluated the potential for false negatives or test failure due to mismatches between primers/probes and the Omicron VoC viral genome.

METHODS:

In silico sensitivity of 12 RT-qPCR tests (containing 30 primers and probe sets) developed for detection of SARS-CoV-2 reported by the World Health Organization (WHO) or available in the literature, was assessed for specifically detecting SARS-CoV-2 Omicron BA.4 and BA.5 sublineages, obtained after removing redundancy from publicly available genomes from National Center for Biotechnology Information (NCBI) and Global Initiative on Sharing Avian Influenza Data (GISAID) databases. Mismatches between amplicon regions of SARS-CoV-2 Omicron VoC and primers and probe sets were evaluated, and clustering analysis of corresponding amplicon sequences was carried out.

RESULTS:

From the 1164 representative SARS-CoV-2 Omicron VoC BA.4 sublineage genomes analyzed, a substitution in the first five nucleotides (C to T) of the amplicon's 3'-end was observed in all samples resulting in 0% sensitivity for assays HKUnivRdRp/Hel (mismatch in reverse primer) and CoremCharite N (mismatch in both forward and reverse primers). Due to a mismatch in the forward primer's 5'-end (3-nucleotide substitution, GGG to AAC), the sensitivity of the ChinaCDC N assay was at 0.69%. The 10 nucleotide mismatches in the reverse primer resulted in 0.09% sensitivity for Omicron sublineage BA.4 for Thai N assay. Of the 1926 BA.5 sublineage genomes, HKUnivRdRp/Hel assay also had 0% sensitivity. A sensitivity of 3.06% was observed for the ChinaCDC N assay because of a mismatch in the forward primer's 5'-end (3-nucleotide substitution, GGG to AAC). Similarly, due to the 10 nucleotide mismatches in the reverse primer, the Thai N assay's sensitivity was low at 0.21% for sublineage BA.5. Further, eight assays for BA.4 sublineage retained high sensitivity (more than 97%) and 9 assays for BA.5 sublineage retained more than 99% sensitivity.

CONCLUSION:

We observed four assays (HKUnivRdRp/Hel, ChinaCDC N, Thai N, CoremCharite N) that could potentially result in false negative results for SARS-CoV-2 Omicron VoCs BA.4 and BA.5 sublineages. Interestingly, CoremCharite N had 0% sensitivity for Omicron Voc BA.4 but 99.53% sensitivity for BA.5. In addition, 66.67% of the assays for BA.4 sublineage and 75% of the assays for BA.5 sublineage retained high sensitivity. Further, amplicon clustering and additional substitution analysis along with sensitivity analysis could be used for the modification and development of RT-qPCR assays for detecting SARS-CoV-2 Omicron VoC sublineages.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Diagnostic study / Experimental Studies Topics: Variants Language: English Journal: J Med Virol Year: 2022 Document Type: Article Affiliation country: Jmv.28241

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Diagnostic study / Experimental Studies Topics: Variants Language: English Journal: J Med Virol Year: 2022 Document Type: Article Affiliation country: Jmv.28241