Your browser doesn't support javascript.
Disposable Voltammetric Immunosensor for D-Dimer Detection as Early Biomarker of Thromboembolic Disease and of COVID-19 Prognosis.
Tortolini, Cristina; Gigli, Valeria; Angeloni, Antonio; Galantini, Luciano; Tasca, Federico; Antiochia, Riccarda.
  • Tortolini C; Department of Experimental Medicine, Sapienza University of Rome, V.le Regina Elena 324, 00166 Rome, Italy.
  • Gigli V; Department of Experimental Medicine, Sapienza University of Rome, V.le Regina Elena 324, 00166 Rome, Italy.
  • Angeloni A; Department of Experimental Medicine, Sapienza University of Rome, V.le Regina Elena 324, 00166 Rome, Italy.
  • Galantini L; Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
  • Tasca F; Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago 9170022, Chile.
  • Antiochia R; Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
Biosensors (Basel) ; 13(1)2022 Dec 28.
Article in English | MEDLINE | ID: covidwho-2236357
ABSTRACT
In this work, we report on the development of a simple electrochemical immunosensor for the detection of D-dimer protein in human plasma samples. The immunosensor is built by a simple drop-casting procedure of chitosan nanoparticles (CSNPs) as biocompatible support, Protein A (PrA), to facilitate the proper orientation of the antibody sites to epitopes as a capture biomolecule, and the D-dimer antibody onto a carboxyl functionalized multi-walled carbon nanotubes screen printed electrode (MWCNTs-SPE). The CSNPs have been morphologically characterized by Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS) techniques. Successively, the electrochemical properties of the screen-printed working electrode after each modification step have been characterized by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The resulting MWCNTs-CSNPs-PrA-D-dimer Ab immunosensor displays an optimal and promising platform for antibody immobilization and specific D-dimer detection. DPV has been used to investigate the antigen/antibody interaction at different D-dimer concentrations. The proposed voltammetric immunosensor allowed a linear range from 2 to 500 µg L-1 with a LOD of 0.6 µg L-1 and a sensitivity of 1.3 µA L µg-1 cm-2. Good stability and a fast response time (5 s) have been reported. Lastly, the performance of the voltammetric immunosensor has been tested in human plasma samples, showing satisfactory results, thus attesting to the promising feasibility of the proposed platform for detecting D-dimer in physiological samples.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Biosensing Techniques / Nanotubes, Carbon / Chitosan / Metal Nanoparticles / COVID-19 Type of study: Diagnostic study / Prognostic study Limits: Humans Language: English Year: 2022 Document Type: Article Affiliation country: Bios13010043

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Biosensing Techniques / Nanotubes, Carbon / Chitosan / Metal Nanoparticles / COVID-19 Type of study: Diagnostic study / Prognostic study Limits: Humans Language: English Year: 2022 Document Type: Article Affiliation country: Bios13010043