Your browser doesn't support javascript.
Water and wastewater digital surveillance for monitoring and early detection of the COVID-19 hotspot: industry 4.0.
Matheri, A N; Belaid, M; Njenga, C K; Ngila, J C.
  • Matheri AN; Department of Chemical Engineering, University of Johannesburg, Johannesburg, South Africa.
  • Belaid M; Department of Chemical Engineering, University of Johannesburg, Johannesburg, South Africa.
  • Njenga CK; United Nation Environmental Programme, Pretoria, South Africa.
  • Ngila JC; Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa.
Int J Environ Sci Technol (Tehran) ; : 1-18, 2022 Feb 07.
Article in English | MEDLINE | ID: covidwho-2243188
ABSTRACT
There are a high number of COVID-19 cases per capita in the world that goes undetected including clinical diseases compatible with COVID-19. While the presence of the COVID-19 in untreated drinking water is possible, it is yet to be detected in the drinking-water supplies. COVID-19 viral fragments have been found in excrete, this call for wastewater monitoring and analysis (wastewater surveillance) of the potential health risk. This raises concern about the potential of the SARS-CoV-2 transmission via the water systems. The economic limits on the medical screening for the SARS-CoV-2 or COVID-19 worldwide are turning to wastewater-based epidemiology as great potential tools for assessing and management of the COVID-19 pandemic. Surveillance and tracking of the pathogens in the wastewater are key to the early warning system and public health strategy monitoring of the COVID-19. Currently, RT-qPCR assays is been developed for SARS-CoV-2 RNA specimen clinical testing and detection in the water system. Convectional wastewater treatment methods and disinfection are expected to eradicate the SAR-CoV-2. Chlorine, UV radiation, ozone, chloramine is been used to inactivate and disinfect the water treatment system against the SARS-CoV-2. Water management and design of the water infrastructure require major changes to accommodate climate change, water cycle, reimaging of digitalization, infrastructure and privacy protection. The water digital revolution, biosensors and nanoscale, contact tracing, knowledge management can accelerate with disruption of the COVID-19 outbreak (water-health-digital nexus).
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Diagnostic study / Prognostic study Language: English Journal: Int J Environ Sci Technol (Tehran) Year: 2022 Document Type: Article Affiliation country: S13762-022-03982-7

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Diagnostic study / Prognostic study Language: English Journal: Int J Environ Sci Technol (Tehran) Year: 2022 Document Type: Article Affiliation country: S13762-022-03982-7