Your browser doesn't support javascript.
Property assessment of an eco-friendly mortar reinforced with recycled mask fiber derived from COVID-19 single-use face masks
Journal of Building Engineering ; 66, 2023.
Article in English | Scopus | ID: covidwho-2243334
ABSTRACT
Wearing a face mask is strongly advised to prevent the spread of the virus causing the COVID-19 pandemic, though masks have produced a tremendous amount of waste. As masks contain polypropylene and other plastics products, total degradation is not achievable, and masks may remain in the form of microplastics for several years in the environment. Therefore, this urgent issue ought to be addressed by properly handling waste face masks to limit their environmental impact. In relation to this goal, a novel application of recycled mask fiber (MF) derived from COVID-19 single-use surgical face masks (i.e., shredded mask fiber-SMF and cut mask fiber-CMF) has been undertaken. Eighteen mortar mixes (9 for water and 9 for 10% CO2 concentration curing) were fabricated at 0%, 0.5%, 1.0%, 1.5%, and 2.0% of both SMF and CMF by volume of ordinary Portland cement-based mortar. The compressive strength, flexural strength, ultrasonic pulse velocity, shrinkage, carbonation degree, permeable voids, and water absorption capabilities were assessed. The outcomes reveal that the compressive strength decreased with an increased percentage of MFs due to increased voids of the mixes with MFs as compared to a control mix. In contrast, significantly higher flexural strength was noted for the mortar with MFs, which is augmented with an increased percentage of MFs. Furthermore, the inclusion of MFs decreased the shrinkage of the mortar compared to the control mix. It was also found that MFs dramatically diminished the water absorption rate compared to the control mix, which reveals that MFs can enhance the durability of the mortar. © 2023 Elsevier Ltd
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Journal of Building Engineering Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Journal of Building Engineering Year: 2023 Document Type: Article