Your browser doesn't support javascript.
Optimized face detector-based intelligent face mask detection model in IoT using deep learning approach
Applied Soft Computing ; 134, 2023.
Article in English | Scopus | ID: covidwho-2243682
ABSTRACT
The growth of the "Internet of Medical Things (IoMT)” allows for the collection and processing of data in healthcare systems. At the same time, it is challenging to study the requirements of public health prevention. Here, mask-wearing is considered an efficient preventive measure for avoiding virus transfer. Hence, it is necessary to implement an automated mask identification model to prevent public epidemics. The main scope of the proposed method is to design a face mask detection model with IoT using a "Single Shot Multi-box Detector (SSD)” and a hybrid deep learning method. The novelty of the proposed model is that the enhancement made in the face detection and face classification with the developed ASMFO by optimizing the parameters like the threshold in SSD, steps per execution in ResNet, and learning rate in MobileNet, which makes it more efficient and to perform better the conventional models. Here, the parameter optimization is carried out using a hybrid optimization algorithm named Adaptive Sailfish Moth Flame Optimization (ASMFO). Then, the detected face images are given to the hybrid approach named Hybrid ResMobileNet (HResMobileNet)-based classification, where the parameters are tuned using the same ASMFO algorithm for achieving accurate mask detection results. However, the suggested mask identification model with IoT based on three standard datasets is compared with the conventional meta-heuristic algorithms and existing classifiers with various measures. Thus, the experimental analysis is conducted to analyze the effectiveness of the proposed framework over different meta-heuristic algorithms and existing classifiers. The implemented ASMFO-HResMobileNet provides 18.57%, 15.67%, 17.56%, 16.24%, and 19.2% elevated accuracy than SVM, CNN, VGG16-LSTM, ResNet 50, MobileNetv2, and ResNet 50-MobileNetv2. © 2022 Elsevier B.V.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Applied Soft Computing Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Applied Soft Computing Year: 2023 Document Type: Article