Your browser doesn't support javascript.
The non-linear and interactive effects of meteorological factors on the transmission of COVID-19: A panel smooth transition regression model for cities across the globe.
Zhai, Guangyu; Qi, Jintao; Zhou, Wenjuan; Wang, Jiancheng.
  • Zhai G; School of Economics and Management, Lanzhou University of Technology, Lanzhou, 730050, China.
  • Qi J; School of Economics and Management, Lanzhou University of Technology, Lanzhou, 730050, China.
  • Zhou W; Gansu Provincial Hospital, Lanzhou, 730000, China.
  • Wang J; Gansu Provincial Hospital, Lanzhou, 730000, China.
Int J Disaster Risk Reduct ; 84: 103478, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2246693
ABSTRACT
The ongoing pandemic created by COVID-19 has co-existed with humans for some time now, thus resulting in unprecedented disease burden. Previous studies have demonstrated the non-linear and single effects of meteorological factors on viral transmission and have a question of how to exclude the influence of unrelated confounding factors on the relationship. However, the interactions involved in such relationships remain unclear under complex weather conditions. Here, we used a panel smooth transition regression (PSTR) model to investigate the non-linear interactive impact of meteorological factors on daily new cases of COVID-19 based on a panel dataset of 58 global cities observed between Jul 1, 2020 and Jan 13, 2022. This new approach offers a possibility of assessing interactive effects of meteorological factors on daily new cases and uses fixed effects to control other unrelated confounding factors in a panel of cities. Our findings revealed that an optimal temperature range (0°C-20 °C) for the spread of COVID-19. The effect of RH (relative humidity) and DTR (diurnal temperature range) on infection became less positive (coefficient 0.0427 to -0.0142; p < 0.05) and negative (coefficient -0.0496 to -0.0248; p < 0.05) with increasing average temperature(T). The highest risk of infection occurred when the temperature was -10 °C and RH was >80% or when the temperature was 10 °C and DTR was 1 °C. Our findings highlight useful implications for policymakers and the general public.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Experimental Studies / Observational study / Prognostic study Language: English Journal: Int J Disaster Risk Reduct Year: 2023 Document Type: Article Affiliation country: J.ijdrr.2022.103478

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Experimental Studies / Observational study / Prognostic study Language: English Journal: Int J Disaster Risk Reduct Year: 2023 Document Type: Article Affiliation country: J.ijdrr.2022.103478