Your browser doesn't support javascript.
Assessment of relationship between aging and contaminant-carryover for different filter layer of surgical mask under urban environmental stressors
Journal of Hazardous Materials ; 443, 2023.
Article in English | Scopus | ID: covidwho-2246725
ABSTRACT
Abundant disposable surgical masks (SMs) remain in the environment and continue to age under urban environmental stressors. This study aimed to investigate the aging characteristics of SMs and the effect of different aged layers of SMs on phenanthrene (PHE), tylosin (TYL), and sulfamethazine (SMT) under two different urban environmental stressors (UV and ozone). The results show that UV exposure causes more severe aging of the SM layers than ozone. The middle layer, made of melt-brown fabric, has displayed the highest degree of aging due to its smaller diameter and mechanical strength. The two-dimensional correlation spectroscopy (2D-COS) analysis reveals the different aging sequences of functional groups and three layers in aged SMs under the two urban environmental stressors. Whether the SMs are aged or not, the adsorptions of three organic pollutants on SMs are positively correlated with the octanol-water partition coefficient. Furthermore, except for the dominant hydrophobic interaction, aged SMs can promote the adsorption of three organic pollutants by accessory interactions (hydrogen bonding and partition), depending on their structures. These findings highlight the environmental effects of new microplastic (MP) sources and coexisting pollutants under the influence of COVID-19, which is helpful in accurately evaluating the biological toxicity of SMs. © 2022 Elsevier B.V.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Journal of Hazardous Materials Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Journal of Hazardous Materials Year: 2023 Document Type: Article