Your browser doesn't support javascript.
High-Throughput Neutralization and Serology Assays Reveal Correlated but Highly Variable Humoral Immune Responses in a Large Population of Individuals Infected with SARS-CoV-2 in the US between March and August 2020.
Zhang, Shuting; Ma, Peijun; Orzechowski, Marek; Lemmer, Allison; Rzasa, Kara; Bagnall, Josephine; Barkho, Sulyman; Chen, Michael; He, Lorri; Neitupski, Raymond; Tran, Victoria; Ackerman, Ross; Gath, Emily; Bond, Austin; Frongillo, Giana; Cleland, Thomas; Golas, Aaron; Gaca, Anthony; Fitzgerald, Michael; Kelly, Kathleen; Hazegh, Kelsey; Dumont, Larry; Hoffman, Corey; Homer, Mary; Marks, Peter; Woolley, Ann; Wong, Sharon; Gomez, James; Livny, Jonathan; Hung, Deborah.
  • Zhang S; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Ma P; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.
  • Orzechowski M; Harvard Medical School, Boston, Massachusetts, USA.
  • Lemmer A; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Rzasa K; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.
  • Bagnall J; Harvard Medical School, Boston, Massachusetts, USA.
  • Barkho S; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Chen M; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • He L; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Neitupski R; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Tran V; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Ackerman R; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Gath E; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Bond A; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Frongillo G; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Cleland T; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Golas A; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Gaca A; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Fitzgerald M; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Kelly K; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Hazegh K; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Dumont L; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Hoffman C; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Homer M; Vitalant Research Institute, Denver, Colorado, USA.
  • Marks P; Vitalant Research Institute, Denver, Colorado, USA.
  • Woolley A; Vitalant Research Institute, Denver, Colorado, USA.
  • Wong S; University of Colorado School of Medicine, Aurora, Colorado, USA.
  • Gomez J; Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, Department of Health and Human Services, Washington, DC, USA.
  • Livny J; Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, Department of Health and Human Services, Washington, DC, USA.
  • Hung D; Center for Biologics Evaluation and Research, US FDA, Silver Spring, Maryland, USA.
mBio ; 14(2): e0352322, 2023 04 25.
Article in English | MEDLINE | ID: covidwho-2246732
ABSTRACT
The ability to measure neutralizing antibodies on large scale can be important for understanding features of the natural history and epidemiology of infection, as well as an aid in determining the efficacy of interventions, particularly in outbreaks such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Because of the assay's rapid scalability and high efficiency, serology measurements that quantify the presence rather than function of serum antibodies often serve as proxies of immune protection. Here, we report the development of a high-throughput, automated fluorescence-based neutralization assay using SARS-CoV-2 virus to quantify neutralizing antibody activity in patient specimens. We performed large-scale testing of over 19,000 COVID-19 convalescent plasma (CCP) samples from patients who had been infected with SARS-CoV-2 between March and August 2020 across the United States. The neutralization capacity of the samples was moderately correlated with serological measurements of anti-receptor-binding domain (RBD) IgG levels. The neutralizing antibody levels within these convalescent-phase serum samples were highly variable against the original USA-WA1/2020 strain with almost 10% of individuals who had had PCR-confirmed SARS-CoV-2 infection having no detectable antibodies either by serology or neutralization, and ~1/3 having no or low neutralizing activity. Discordance between neutralization and serology measurements was mainly due to the presence of non-IgG RBD isotypes. Meanwhile, natural infection with the earliest SARS-CoV-2 strain USA-WA1/2020 resulted in weaker neutralization of subsequent B.1.1.7 (alpha) and the B.1.351 (beta) variants, with 88% of samples having no activity against the BA.1 (omicron) variant. IMPORTANCE The ability to directly measure neutralizing antibodies on live SARS-CoV-2 virus in individuals can play an important role in understanding the efficacy of therapeutic interventions or vaccines. In contrast to functional neutralization assays, serological assays only quantify the presence of antibodies as a proxy of immune protection. Here, we have developed a high-throughput, automated neutralization assay for SARS-CoV-2 and measured the neutralizing activity of ~19,000 COVID-19 convalescent plasma (CCP) samples collected across the United States between March and August of 2020. These data were used to support the FDA's interpretation of CCP efficacy in patients with SARS-CoV-2 infection and their issuance of emergency use authorization of CCP in 2020.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Diagnostic study / Prognostic study Topics: Vaccines / Variants Limits: Humans Language: English Journal: MBio Year: 2023 Document Type: Article Affiliation country: Mbio.03523-22

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Diagnostic study / Prognostic study Topics: Vaccines / Variants Limits: Humans Language: English Journal: MBio Year: 2023 Document Type: Article Affiliation country: Mbio.03523-22