Your browser doesn't support javascript.
Surface control approach for growth of cerium oxide on flower-like molybdenum disulfide nanosheets enables superior removal of uremic toxins
Journal of Colloid and Interface Science ; 630:855-865, 2023.
Article in English | Scopus | ID: covidwho-2246767
ABSTRACT
Due to the high incidence of kidney disease, there is an urgent need to develop wearable artificial kidneys. This need is further exacerbated by the coronavirus disease 2019 pandemic. However, the dialysate regeneration system of the wearable artificial kidney has a low adsorption capacity for urea, which severely limits its application. Therefore, nanomaterials that can effectively remove uremic toxins, especially urea, to regenerate dialysate are required and should be further investigated and developed. Herein, flower-like molybdenum disulphide (MoS2) nanosheets decorated with highly dispersed cerium oxide (CeO2) were prepared (MoS2/CeO2), and their adsorption performances for urea, creatinine, and uric acid were studied in detail. Due to the open interlayer structures and the combination of MoS2 and CeO2, which can provide abundant adsorption active sites, the MoS2/CeO2 nanomaterials present excellent uremic toxin adsorption activities. Further, uremic toxin adsorption capacities were also assessed using a self-made fixed bed device under dynamic conditions, with the aim of developing MoS2/CeO2 for the practical adsorption of uremic toxins. In addition, the biocompatibility of MoS2/CeO2 was systematically analyzed using hemocompatibility and cytotoxicity assays. Our data suggest that MoS2/CeO2 can be safely used for applications requiring close contact with blood. Our findings confirm that novel 2-dimensional nanomaterial adsorbents have significant potential for dialysis fluid regeneration. © 2022
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Journal of Colloid and Interface Science Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Journal of Colloid and Interface Science Year: 2023 Document Type: Article