Your browser doesn't support javascript.
In Silico Exploration of Microtubule Agent Griseofulvin and Its Derivatives Interactions with Different Human ß-Tubulin Isotypes.
Aris, Parisa; Mohamadzadeh, Masoud; Kruglikov, Alibek; Askari Rad, Mahbubeh; Xia, Xuhua.
  • Aris P; Department of Biology, University of Ottawa, 30 Marie Curie, Station A, P.O. Box 450, Ottawa, ON K1N 6N5, Canada.
  • Mohamadzadeh M; Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas 71961, Iran.
  • Kruglikov A; Department of Biology, University of Ottawa, 30 Marie Curie, Station A, P.O. Box 450, Ottawa, ON K1N 6N5, Canada.
  • Askari Rad M; Department of Biology, University of Ottawa, 30 Marie Curie, Station A, P.O. Box 450, Ottawa, ON K1N 6N5, Canada.
  • Xia X; Department of Biology, University of Ottawa, 30 Marie Curie, Station A, P.O. Box 450, Ottawa, ON K1N 6N5, Canada.
Molecules ; 28(5)2023 Mar 05.
Article in English | MEDLINE | ID: covidwho-2250183
ABSTRACT
Tubulin isotypes are known to regulate microtubule stability and dynamics, as well as to play a role in the development of resistance to microtubule-targeted cancer drugs. Griseofulvin is known to disrupt cell microtubule dynamics and cause cell death in cancer cells through binding to tubulin protein at the taxol site. However, the detailed binding mode involved molecular interactions, and binding affinities with different human ß-tubulin isotypes are not well understood. Here, the binding affinities of human ß-tubulin isotypes with griseofulvin and its derivatives were investigated using molecular docking, molecular dynamics simulation, and binding energy calculations. Multiple sequence analysis shows that the amino acid sequences are different in the griseofulvin binding pocket of ßI isotypes. However, no differences were observed at the griseofulvin binding pocket of other ß-tubulin isotypes. Our molecular docking results show the favorable interaction and significant affinity of griseofulvin and its derivatives toward human ß-tubulin isotypes. Further, molecular dynamics simulation results show the structural stability of most ß-tubulin isotypes upon binding to the G1 derivative. Taxol is an effective drug in breast cancer, but resistance to it is known. Modern anticancer treatments use a combination of multiple drugs to alleviate the problem of cancer cells resistance to chemotherapy. Our study provides a significant understanding of the involved molecular interactions of griseofulvin and its derivatives with ß-tubulin isotypes, which may help to design potent griseofulvin analogues for specific tubulin isotypes in multidrug-resistance cancer cells in future.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Tubulin / Griseofulvin Limits: Humans Language: English Journal subject: Biology Year: 2023 Document Type: Article Affiliation country: Molecules28052384

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Tubulin / Griseofulvin Limits: Humans Language: English Journal subject: Biology Year: 2023 Document Type: Article Affiliation country: Molecules28052384