Your browser doesn't support javascript.
Optimal use of COVID-19 Ag-RDT screening at border crossings to prevent community transmission: A modeling analysis
PLOS global public health ; 2(5), 2022.
Article in English | EuropePMC | ID: covidwho-2254805
ABSTRACT
Countries around the world have implemented restrictions on mobility, especially cross-border travel to reduce or prevent SARS-CoV-2 community transmission. Rapid antigen testing (Ag-RDT), with on-site administration and rapid turnaround time may provide a valuable screening measure to ease cross-border travel while minimizing risk of local transmission. To maximize impact, we developed an optimal Ag-RDT screening algorithm for cross-border entry. Using a previously developed mathematical model, we determined the daily number of imported COVID-19 cases that would generate no more than a relative 1% increase in cases over one month for different effective reproductive numbers (Rt) and COVID-19 prevalence within the recipient country. We then developed an algorithm—for differing levels of Rt, arrivals per day, mode of travel, and SARS-CoV-2 prevalence amongst travelers—to determine the minimum proportion of people that would need Ag-RDT testing at border crossings to ensure no greater than the relative 1% community spread increase. When daily international arrivals and/or COVID-19 prevalence amongst arrivals increases, the proportion of arrivals required to test using Ag-RDT increases. At very high numbers of international arrivals/COVID-19 prevalence, Ag-RDT testing is not sufficient to prevent increased community spread, especially when recipient country prevalence and Rt are low. In these cases, Ag-RDT screening would need to be supplemented with other measures to prevent an increase in community transmission. An efficient Ag-RDT algorithm for SARS-CoV-2 testing depends strongly on the epidemic status within the recipient country, volume of travel, proportion of land and air arrivals, test sensitivity, and COVID-19 prevalence among travelers.
Search on Google
Collection: Databases of international organizations Database: EuropePMC Language: English Journal: PLOS global public health Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS

Search on Google
Collection: Databases of international organizations Database: EuropePMC Language: English Journal: PLOS global public health Year: 2022 Document Type: Article