Your browser doesn't support javascript.
Research progress in high value-added utilization technology of waste plastics
Huagong Jinzhan/Chemical Industry and Engineering Progress ; 42(2):1020-1027, 2023.
Article in Chinese | Scopus | ID: covidwho-2258679
ABSTRACT
The low degradability of waste plastics will continue to pollute the environment, and the spread of the COVID-19 has exacerbated the use and accumulation of plastics, and thus the efficient treatment of waste plastic resources has become an urgent technical problem to be solved. By analyzing several mainstream waste plastics treatment technologies, it was clear that resourceful and high value-added utilization technology was the most competitive and environmentally friendly waste plastics treatment route in the market. The research progress of high value-added utilization technology of waste plastics at home and abroad in recent years were reviewed. The development and variation of conventional thermal cracking technology were discussed. Through this route, the highest yield of waste plastics into fuel products can reach 97%—98%. It was pointed out that the conversion of waste plastics into jet fuel, high value-added chemicals and functional materials for special applications through chemical, catalytic and biological technologies was the mainstream research direction and development trend in this field. Among them, the yield of conversion to high value-added monomer could reach more than 97%, so as to realize the upgrading of plastic waste from the primary treatment stage of "waste clearance” to "turning waste into use” and "turning waste into treasure”, and help China achieve the goal of "double carbon”。. © 2023 Chemical Industry Press. All rights reserved.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: Chinese Journal: Chemical Industry and Engineering Progress Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: Chinese Journal: Chemical Industry and Engineering Progress Year: 2023 Document Type: Article