Your browser doesn't support javascript.
The IOMT-Based Risk-Free Approach to Lung Disorders Detection from Exhaled Breath Examination
Intelligent Automation and Soft Computing ; 36(3):2835-2847, 2023.
Article in English | Scopus | ID: covidwho-2260491
ABSTRACT
The lungs are the main fundamental part of the human respiratory system and are among the major organs of the human body. Lung disorders, including Coronavirus (Covid-19), are among the world's deadliest and most life-threatening diseases. Early and social distance-based detection and treatment can save lives as well as protect the rest of humanity. Even though X-rays or Computed Tomography (CT) scans are the imaging techniques to analyze lung-related disorders, medical practitioners still find it challenging to analyze and identify lung cancer from scanned images. unless COVID-19 reaches the lungs, it is unable to be diagnosed. through these modalities. So, the Internet of Medical Things (IoMT) and machine learning-based computer-assisted approaches have been developed and applied to automate these diagnostic procedures. This study also aims at investigating an automated approach for the detection of COVID-19 and lung disorders other than COVID-19 infection in a non-invasive manner at their early stages through the analysis of human breath. Human breath contains several volatile organic compounds, i.e., water vapor (5.0%–6.3%), nitrogen (79%), oxygen (13.6%–16.0%), carbon dioxide (4.0%–5.3%), argon (1%), hydrogen (1 ppm) (parts per million), carbon monoxide (1%), proteins (1%), isoprene (1%), acetone (1%), and ammonia (1%). Beyond these limits, the presence of a certain volatile organic compound (VOC) may indicate a disease. The proposed research not only aims to increase the accuracy of lung disorder detection from breath analysis but also to deploy the model in a real-time environment as a home appliance. Different sensors detect VOC;microcontrollers and machine learning models have been used to detect these lung disorders. Overall, the suggested methodology is accurate, efficient, and non-invasive. The proposed method obtained an accuracy of 93.59%, a sensitivity of 89.59%, a specificity of 94.87%, and an AUC-Value of 0.96. © 2023, Tech Science Press. All rights reserved.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Type of study: Prognostic study Language: English Journal: Intelligent Automation and Soft Computing Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Type of study: Prognostic study Language: English Journal: Intelligent Automation and Soft Computing Year: 2023 Document Type: Article