Your browser doesn't support javascript.
TaME-seq2: tagmentation-assisted multiplex PCR enrichment sequencing for viral genomic profiling.
Hesselberg Løvestad, Alexander; Stosic, Milan S; Costanzi, Jean-Marc; Christiansen, Irene Kraus; Aamot, Hege Vangstein; Ambur, Ole Herman; Rounge, Trine B.
  • Hesselberg Løvestad A; Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway.
  • Stosic MS; Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway.
  • Costanzi JM; Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway.
  • Christiansen IK; Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway.
  • Aamot HV; Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway.
  • Ambur OH; Division of Medicine, Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital and University of Oslo, Lørenskog, Norway.
  • Rounge TB; Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway.
Virol J ; 20(1): 44, 2023 03 08.
Article in English | MEDLINE | ID: covidwho-2262804
ABSTRACT

BACKGROUND:

Previously developed TaME-seq method for deep sequencing of HPV, allowed simultaneous identification of the human papillomavirus (HPV) DNA consensus sequence, low-frequency variable sites, and chromosomal integration events. The method has been successfully validated and applied to the study of five carcinogenic high-risk (HR) HPV types (HPV16, 18, 31, 33, and 45). Here, we present TaME-seq2 with an updated laboratory workflow and bioinformatics pipeline. The HR-HPV type repertoire was expanded with HPV51, 52, and 59. As a proof-of-concept, TaME-seq2 was applied on SARS-CoV-2 positive samples showing the method's flexibility to a broader range of viruses, both DNA and RNA.

RESULTS:

Compared to TaME-seq version 1, the bioinformatics pipeline of TaME-seq2 is approximately 40× faster. In total, 23 HPV-positive samples and seven SARS-CoV-2 clinical samples passed the threshold of 300× mean depth and were submitted to further analysis. The mean number of variable sites per 1 kb was ~ 1.5× higher in SARS-CoV-2 than in HPV-positive samples. Reproducibility and repeatability of the method were tested on a subset of samples. A viral integration breakpoint followed by a partial genomic deletion was found in within-run replicates of HPV59-positive sample. Identified viral consensus sequence in two separate runs was > 99.9% identical between replicates, differing by a couple of nucleotides identified in only one of the replicates. Conversely, the number of identical minor nucleotide variants (MNVs) differed greatly between replicates, probably caused by PCR-introduced bias. The total number of detected MNVs, calculated gene variability and mutational signature analysis, were unaffected by the sequencing run.

CONCLUSION:

TaME-seq2 proved well suited for consensus sequence identification, and the detection of low-frequency viral genome variation and viral-chromosomal integrations. The repertoire of TaME-seq2 now encompasses seven HR-HPV types. Our goal is to further include all HR-HPV types in the TaME-seq2 repertoire. Moreover, with a minor modification of previously developed primers, the same method was successfully applied for the analysis of SARS-CoV-2 positive samples, implying the ease of adapting TaME-seq2 to other viruses.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Papillomavirus Infections / COVID-19 Type of study: Diagnostic study / Prognostic study Topics: Variants Limits: Humans Language: English Journal: Virol J Journal subject: Virology Year: 2023 Document Type: Article Affiliation country: S12985-023-02002-5

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Papillomavirus Infections / COVID-19 Type of study: Diagnostic study / Prognostic study Topics: Variants Limits: Humans Language: English Journal: Virol J Journal subject: Virology Year: 2023 Document Type: Article Affiliation country: S12985-023-02002-5