Your browser doesn't support javascript.
Could volatile cryptocurrency stimulate systemic risks in the energy sector? Evidence from novel connectedness models
Carbon Management ; 14(1), 2023.
Article in English | Scopus | ID: covidwho-2263698
ABSTRACT
By identifying the connectedness of seven indicators from January 1, 2019, to June 13, 2022, we choose an extended joint connectedness approach to a vector autoregression model with time-varying parameter (TVP-VAR) to analyze interlinkages between Crypto Volatility (CV) and Energy Volatility (EV). Our findings show that the COVID-19 outbreak seems to have an impact on the dynamic connectedness of the whole system, which peaks at about 60% toward the end of 2019. According to net total directional connectedness over a quantile, throughout the 2020–2022 timeframe, natural gas and crude oil are net shock transmitters, while the CV, clean energy, solar energy, and green bonds consistently receive all other indicators. Specifically, pairwise connectedness indicates that the CV appears to be a net transmitter of shocks to all energy indicators before the COVID-19 outbreak but acts as a net receiver of shocks from clean energy, wind energy, and green bonds in late 2020. The CV mostly has spillover effects on green bonds. The primary net transmitter of shocks to the Crypto market is crude oil. Our findings are critical in helping investors and authorities design the most effective policies to lessen the vulnerabilities of these indicators and reduce the spread of risk or uncertainty. © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Type of study: Prognostic study Language: English Journal: Carbon Management Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Type of study: Prognostic study Language: English Journal: Carbon Management Year: 2023 Document Type: Article