Your browser doesn't support javascript.
Rapid detection of intact SARS-CoV-2 using designer DNA Nets and a pocket-size smartphone-linked fluorimeter.
Lee, Hankeun; Wang, Weijing; Chauhan, Neha; Xiong, Yanyu; Magazine, Nicholas; Valdescruz, Owen; Kim, Dong Yeun; Qiu, Tianjie; Huang, Weishan; Wang, Xing; Cunningham, Brian T.
  • Lee H; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Wang W; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Chauhan N; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Center for Genomic Diagnostics, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61
  • Xiong Y; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Center for Genomic Diagnostics, Carl R. Woese Institute for Genom
  • Magazine N; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
  • Valdescruz O; Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Kim DY; Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Qiu T; Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Huang W; Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
  • Wang X; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
  • Cunningham BT; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Ch
Biosens Bioelectron ; 229: 115228, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2268244
ABSTRACT
Rapid, sensitive, and inexpensive point-of-care diagnosis is vital to controlling highly infectious diseases, including COVID-19. Here, we report the design and characterization of a compact fluorimeter called a "Virus Pod" (V-Pod) that enables sensitive self-testing of SARS-CoV-2 viral load in saliva. The rechargeable battery-operated device reads the fluorescence generated by Designer DNA Nanostructures (DDN) when they specifically interact with intact SARS-CoV-2 virions. DDNs are net-shaped self-assembling nucleic acid constructs that provide an array of highly specific aptamer-fluorescent quencher duplexes located at precise positions that match the pattern of spike proteins. The room-temperature assay is performed by mixing the test sample with DNA Net sensor in a conventional PCR tube and placing the tube into the V-Pod. Fluorescent signals are generated when multivalent aptamer-spike binding releases fluorescent quenchers, resulting in rapid (5-min) generation of dose-dependent output. The V-Pod instrument performs laser excitation, fluorescence intensity quantitation, and secure transmission of data to an App via Bluetooth™. We show that the V-Pod and DNA Net assay achieves clinically relevant detection limits of 3.92 × 103 viral-genome-copies/mL for pseudo-typed wild-type SARS-CoV-2 and 1.84 × 104, 9.69 × 104, 6.99 × 104 viral-genome-copies/mL for pathogenic Delta, Omicron, and D614G variants, representing sensitivity similar to laboratory-based PCR. The pocket-sized instrument (∼$294), inexpensive reagent-cost/test ($1.26), single-step, rapid sample-to-answer, and quantitative output represent a capability that is compatible with the needs of frequent self-testing in a consumer-friendly format that can link with medical service systems such as healthcare providers, contact tracing, and infectious disease reporting.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Biosensing Techniques / COVID-19 Type of study: Diagnostic study / Prognostic study Topics: Variants Limits: Humans Language: English Journal: Biosens Bioelectron Journal subject: Biotechnology Year: 2023 Document Type: Article Affiliation country: J.bios.2023.115228

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Biosensing Techniques / COVID-19 Type of study: Diagnostic study / Prognostic study Topics: Variants Limits: Humans Language: English Journal: Biosens Bioelectron Journal subject: Biotechnology Year: 2023 Document Type: Article Affiliation country: J.bios.2023.115228