Your browser doesn't support javascript.
A photonic resonator interferometric scattering microscope for label-free detection of nanometer-scale objects with digital precision in point-of-use environments.
Liu, Leyang; Tibbs, Joseph; Li, Nantao; Bacon, Amanda; Shepherd, Skye; Lee, Hankeun; Chauhan, Neha; Demirci, Utkan; Wang, Xing; Cunningham, Brian T.
  • Liu L; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Tibbs J; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Li N; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Bacon A; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Shepherd S; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Lee H; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Chauhan N; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Chemistry, University of Illinois at Urbana-Champa
  • Demirci U; Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA, 94304, USA.
  • Wang X; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Chemistry, University of Illinois at Urbana-Champa
  • Cunningham BT; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Ur
Biosens Bioelectron ; 228: 115197, 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2269328
ABSTRACT
Label-free detection and digital counting of nanometer-scaled objects such as nanoparticles, viruses, extracellular vesicles, and protein molecules enable a wide range of applications in cancer diagnostics, pathogen detection, and life science research. Here, we report the design, implementation, and characterization of a compact Photonic Resonator Interferometric Scattering Microscope (PRISM) designed for point-of-use environments and applications. The contrast of interferometric scattering microscopy is amplified through a photonic crystal surface, upon which scattered light from an object combines with illumination from a monochromatic source. The use of a photonic crystal substrate for interferemetric scattering microscopy results in reduced requirements for high-intensity lasers or oil-immersion objectives, thus opening a pathway toward instruments that are more suitable for environments outside the optics laboratory. The instrument incorporates two innovative elements that facilitate operation on a desktop in ordinary laboratory environments by users that do not have optics expertise. First, because scattering microscopes are extremely sensitive to vibration, we incorporated an inexpensive but effective solution of suspending the instrument's main components from a rigid metal framework using elastic bands, resulting in an average of 28.7 dBV reduction in vibration amplitude compared to an office desk. Second, an automated focusing module based on the principle of total internal reflection maintains the stability of image contrast over time and spatial position. In this work, we characterize the system's performance by measuring the contrast from gold nanoparticles with diameters in the 10-40 nm range and by observing various biological analytes, including HIV virus, SARS-CoV-2 virus, exosome, and ferritin protein.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Biosensing Techniques / Metal Nanoparticles / COVID-19 Type of study: Diagnostic study Limits: Humans Language: English Journal: Biosens Bioelectron Journal subject: Biotechnology Year: 2023 Document Type: Article Affiliation country: J.bios.2023.115197

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Biosensing Techniques / Metal Nanoparticles / COVID-19 Type of study: Diagnostic study Limits: Humans Language: English Journal: Biosens Bioelectron Journal subject: Biotechnology Year: 2023 Document Type: Article Affiliation country: J.bios.2023.115197