Your browser doesn't support javascript.
FPGA Based Light Weight Encryption of Medical Data for IoMT Devices using ASCON Cipher
8th IEEE International Symposium on Smart Electronic Systems, iSES 2022 ; : 196-201, 2022.
Article in English | Scopus | ID: covidwho-2277516
ABSTRACT
Internet of Things applications with various sensors in public network are vulnerable to cyber physical attacks. The technology of IoT in smart health monitoring systems popularly known as Internet of Medical Things (IoMT) devices. The rapid growth of remote telemedicine has witnessed in the post COVID era. Data collected over IoMT devices is sensitive and needs security, hence provided by enhancing a light weight encryption module on IoMT device. An authenticated Encryption with Associated Data is employed on the IoMT device to enhance the security to the medical wellness of patient. This paper presents FPGA-based implementation of ASCON-128, a light weight cipher for data encryption. A LUT6 based substitution box (SBOX) is implemented on FPGA as part of cipher permutation block. The proposed architecture takes 1330 number of LUTs, which is 35% less compared to the best existing design. Moreover, the proposed ASCON architecture has improved the throughput by 45% compared to the best existing design. This paper presents the results pertaining to encryption and decryption of medical data as well as normal images. © 2022 IEEE.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: 8th IEEE International Symposium on Smart Electronic Systems, iSES 2022 Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: 8th IEEE International Symposium on Smart Electronic Systems, iSES 2022 Year: 2022 Document Type: Article