Your browser doesn't support javascript.
A novel PRFB decomposition for non-stationary time-series and image analysis
Signal Processing ; 207, 2023.
Article in English | Scopus | ID: covidwho-2281667
ABSTRACT
This work presents a novel perfect reconstruction filterbank decomposition (PRFBD) method for nonlinear and non-stationary time-series and image data representation and analysis. The Fourier decomposition method (FDM), an adaptive approach based on Fourier representation (FR), is shown to be a special case of the proposed PRFBD. In addition, adaptive Fourier–Gauss decomposition (FGD) based on FR and Gaussian filters, and adaptive Fourier–Butterworth decomposition (FBD) based on Butterworth filters are developed as the other special cases of the proposed PRFBD method. The proposed theory of PRFBD can decompose any signal (time-series, image, or other data) into a set of desired number of Fourier intrinsic band functions (FIBFs) that follow the amplitude-modulation and frequency-modulation (AM-FM) representations. A generic filterbank representation, where perfect reconstruction can be ensured for any given set of lowpass or highpass filters, is also presented. We performed an extensive analysis on both simulated and real-life data (COVID-19 pandemic, Earthquake and Gravitational waves) to demonstrate the efficacy of the proposed method. The resolution results in the time-frequency representation demonstrate that the proposed method is more promising than the state-of-the-art approaches. © 2023 Elsevier B.V.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Type of study: Experimental Studies Language: English Journal: Signal Processing Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Type of study: Experimental Studies Language: English Journal: Signal Processing Year: 2023 Document Type: Article