Your browser doesn't support javascript.
Rapid and Easy-Read Porcine Circovirus Type 4 Detection with CRISPR-Cas13a-Based Lateral Flow Strip.
Wang, Jieru; Zhu, Xiaojie; Yin, Dongdong; Cai, Chang; Liu, Hailong; Yang, Yuqing; Guo, Zishi; Yin, Lei; Shen, Xuehuai; Dai, Yin; Pan, Xiaocheng.
  • Wang J; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary
  • Zhu X; China Institute of Veterinary Drug Control, Beijing 100000, China.
  • Yin D; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary
  • Cai C; China-Australian Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China.
  • Liu H; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
  • Yang Y; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
  • Guo Z; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
  • Yin L; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary
  • Shen X; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary
  • Dai Y; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary
  • Pan X; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary
Microorganisms ; 11(2)2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2286055
ABSTRACT
First identified as a new circovirus in Hunan Province in China in 2019, porcine circovirus (PCV4) is now widely detected in other Chinese provinces and South Korea. In recent years, the virus has threatened pig health and operations in the pig industry. Hence, early PCV4 detection and regular surveillance are required to control the spread of infection and prevent collateral damage to the industry. Due to PCV4 being difficult to isolate in vitro, molecular detection methods, such as conventional PCR and real-time PCR, and serological assays are currently the main methods used for the detection of PCV4 infection. However, they are time-consuming, labor-intensive, and complex and require professional personnel. To facilitate rapid pen-side PCV4 diagnoses, we used clustered regularly interspaced short palindromic repeats (CRISPR) and Cas13a technology to develop a quick testing kit. Five recombinase-aided amplification (RPA) primer sets were designed based on the conserved PCV4-Cap gene nucleotide region, which were used to determine several key lateral flow strip (LFD) characteristics (sensitivity, specificity, and accuracy). The results showed that the RPA-Cas13a-LFD reaction could detect PCV4 within 1.5 h in genomic DNA harboring a minimum of a single copy. Furthermore, the assay showed good specificity and absence of cross-reactivity with PCV2, PCV3, or other porcine viruses. When we tested 15 clinical samples, a high accuracy was also recorded. Therefore, we successfully developed a detection assay that was simple, fast, accurate, and suitable for on-site PCV4 testing.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Diagnostic study / Prognostic study / Randomized controlled trials Language: English Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Diagnostic study / Prognostic study / Randomized controlled trials Language: English Year: 2023 Document Type: Article