Your browser doesn't support javascript.
Nanozyme: a New Approach for Anti-microbial Infections
Wuji Cailiao Xuebao/Journal of Inorganic Materials ; 38(1):43-54, 2023.
Article in English | Scopus | ID: covidwho-2287077
ABSTRACT
Bacteria and viruses always posed a threat to human health. Most impressively, SARS-CoV-2 has raged around the world for almost three years, causing huge loss to human health. Facing increasing challenges of drug-resistance and poor treatment efficacy, new solutions are urgently needed to combat pathogenic microorganisms. Recently, nanozymes with intrinsic enzyme-like activities emerged as a promising new type of "antibiotics”. Nanozymes exhibit superior antibacterial and antiviral activities under physiological conditions by efficiently catalyzing generation of a large number of reactive oxygen species. Moreover, enhanced therapeutic effects are achieved in nanozyme-based therapy aided by the unique physicochemical properties of nanomaterials such as photothermal and photodynamic effects. This paper reviews the latest research progress in the field of anti-microbial nanozymes, systematically summarizes and analyzes the principles of nanozymes in the treatment of bacteria and viruses from a mechanistic point of view. An outlook on the future direction and the challenges of new anti-microbial infection nanomaterials are proposed to provide inspiration for developing next generation anti-microbial nanozymes. © 2023 Science Press. All rights reserved.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Journal of Inorganic Materials Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Journal of Inorganic Materials Year: 2023 Document Type: Article