Your browser doesn't support javascript.
COVID-19 Face Mask Classification Using Deep Learning
Lecture Notes on Data Engineering and Communications Technologies ; 165:77-91, 2023.
Article in English | Scopus | ID: covidwho-2290497
ABSTRACT
The COVID-19 pandemic has triggered a global health disaster because its virus is spread mainly through minute respiratory droplets from coughing, sneezing, or prolonged close contact between individuals. Consequently, World Health Organization (WHO) urged wearing face masks in public places such as schools, train stations, hospitals, etc., as a precaution against COVID-19. However, it takes work to monitor people in these places manually. Therefore, an automated facial mask detection system is essential for such enforcement. Nevertheless, face detection systems confront issues, such as the use of accessories that obscure the face region, for example, face masks. Even existing detection systems that depend on facial features struggle to obtain good accuracy. Recent advancements in object detection, based on deep learning (DL) models, have shown good performance in identifying objects in images. This work proposed a DL-based approach to develop a face mask detector model to categorize masked and unmasked faces in images and real-time streaming video. The model is trained and evaluated on two different datasets, which are synthetic and real masked face datasets. Experiments on these two datasets showed that the performance accuracy rate of this model is 99% and 89%, respectively. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Lecture Notes on Data Engineering and Communications Technologies Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Lecture Notes on Data Engineering and Communications Technologies Year: 2023 Document Type: Article